Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Ave, New Haven, CT, USA.
Phys Chem Chem Phys. 2014 Feb 21;16(7):3230-7. doi: 10.1039/c3cp54555e. Epub 2014 Jan 10.
Understanding the interactions between catalyst and electrolyte in Li-O2 systems is crucial to improving capacities, efficiencies, and cycle life. In this study, supported noble metal catalysts Pt/C, Pd/C, and Au/C were paired with popular Li-O2 electrolyte solvents dimethoxyethane (DME), tetraglyme (TEGDME), and dimethyl sulfoxide (DMSO). The effects of these combinations on stability, kinetics, and activity were assessed. We show evidence of a synergistic effect between Pt and Pd catalysts and a DMSO-based electrolyte which enhances the kinetics of oxygen reduction and evolution reactions. DME and TEGDME are more prone to decomposition and less kinetically favorable for oxygen reduction and evolution than DMSO. While the order of oxygen reduction onset potentials with each catalyst was found to be consistent across electrolyte (Pd > Pt > Au), larger overpotentials with DME and TEGDME, and negative shifts in onset after only five cycles favor the stability of a DMSO electrolyte. Full cell cycling experiments confirm that catalyst-DMSO combinations produce up to 9 times higher discharge capacities than the same with TEGDME after 20 cycles (∼707.4 vs. 78.8 mA h g(-1) with Pd/C). Ex situ EDS and in situ EIS analyses of resistive species in the cathode suggest that improvements in capacity with DMSO are due to a combination of greater electrolyte conductivity and catalyst synergies. Our findings demonstrate that co-selection of catalyst and electrolyte is necessary to exploit chemical synergies and improve the performance of Li-O2 cells.
了解 Li-O2 体系中催化剂和电解质之间的相互作用对于提高容量、效率和循环寿命至关重要。在这项研究中,负载型贵金属催化剂 Pt/C、Pd/C 和 Au/C 分别与常见的 Li-O2 电解质溶剂二甲氧基乙烷(DME)、四甘醇二甲醚(TEGDME)和二甲基亚砜(DMSO)进行了配对。评估了这些组合对稳定性、动力学和活性的影响。我们证明了 Pt 和 Pd 催化剂与 DMSO 基电解质之间存在协同效应,这增强了氧气还原和析氧反应的动力学。DME 和 TEGDME 比 DMSO 更容易分解,对于氧气还原和析氧反应的动力学不利。虽然每个催化剂的氧气还原起始电位顺序在电解质中是一致的(Pd > Pt > Au),但 DME 和 TEGDME 的过电位较大,并且仅经过五个循环后起始电位就会发生负移,这有利于 DMSO 电解质的稳定性。全电池循环实验证实,与 TEGDME 相比,催化剂-DMSO 组合在 20 次循环后可产生高达 9 倍的放电容量(Pd/C 时为 707.4 与 78.8 mA h g(-1))。对阴极中电阻物质的原位 EIS 分析表明,DMSO 中容量的提高是由于电解质电导率的提高和催化剂协同作用的共同作用。我们的研究结果表明,有必要对催化剂和电解质进行协同选择,以利用化学协同作用并提高 Li-O2 电池的性能。