Pargoletti Eleonora, Salvi Annalisa, Giordana Alessia, Cerrato Giuseppina, Longhi Mariangela, Minguzzi Alessandro, Cappelletti Giuseppe, Vertova Alberto
Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy.
Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Firenze, Italy.
Nanomaterials (Basel). 2020 Sep 1;10(9):1735. doi: 10.3390/nano10091735.
One of the major drawbacks in Lithium-air batteries is the sluggish kinetics of the oxygen reduction reaction (ORR). In this context, better performances can be achieved by adopting a suitable electrocatalyst, such as MnO. Herein, we tried to design nano-MnO tuning the final ORR electroactivity by tailoring the doping agent (Co or Fe) and its content (2% or 5% molar ratios). Staircase-linear sweep voltammetries (S-LSV) were performed to investigate the nanopowders electrocatalytic behavior in organic solvent (propylene carbonate, PC and 0.15 M LiNO as electrolyte). Two percent Co-doped MnO revealed to be the best-performing sample in terms of ORR onset shift (of ~130 mV with respect to bare glassy carbon electrode), due to its great lattice defectivity and presence of the highly electroactive γ polymorph (by X-ray diffraction analyses, XRPD and infrared spectroscopy, FTIR). 5% Co together with 2% Fe could also be promising, since they exhibited fewer diffusive limitations, mainly due to their peculiar pore distribution (by Brunauer-Emmett-Teller, BET) that disfavored the cathode clogging. Particularly, a too-high Fe content led to iron segregation (by energy dispersive X-ray spectroscopy, EDX, X-ray photoelectron spectroscopy, XPS and FTIR) provoking a decrease of the electroactive sites, with negative consequences for the ORR.
锂空气电池的主要缺点之一是氧还原反应(ORR)的动力学缓慢。在这种情况下,通过采用合适的电催化剂(如MnO)可以实现更好的性能。在此,我们试图通过调整掺杂剂(Co或Fe)及其含量(2%或5%摩尔比)来设计纳米MnO,以调节最终的ORR电活性。进行阶梯线性扫描伏安法(S-LSV)以研究纳米粉末在有机溶剂(碳酸丙烯酯,PC和0.15 M LiNO作为电解质)中的电催化行为。2% Co掺杂的MnO在ORR起始电位偏移方面表现最佳(相对于裸玻碳电极约为130 mV),这归因于其较大的晶格缺陷以及高电活性γ多晶型物的存在(通过X射线衍射分析,XRPD和红外光谱,FTIR)。5% Co与2% Fe组合也可能具有前景,因为它们表现出较少的扩散限制,主要是由于其特殊的孔分布(通过布鲁诺尔-埃米特-泰勒法,BET),这种分布不利于阴极堵塞。特别是,过高的Fe含量会导致铁偏析(通过能量色散X射线光谱法,EDX,X射线光电子能谱法,XPS和FTIR),从而导致电活性位点减少,对ORR产生负面影响。