From the Department of Medicine, Division of Cardiology and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine (B.H., S.P., T.B., W.K.K.C., Y.M.A., T.H., B.R., E.A.F.); Medizinische Klinik für Kardiologie und Angiologie, Charité-Universitaetsmedizin Berlin, Berlin, Germany (B.H.); and Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, OH (T.C.T., M.S.S.Y., J.A.D., Y.H., J.B., S.Z.B., J.D.S., S.L.H.).
Arterioscler Thromb Vasc Biol. 2014 Apr;34(4):779-89. doi: 10.1161/ATVBAHA.113.303044. Epub 2014 Jan 9.
Preclinical and clinical studies have shown beneficial effects of infusions of apolipoprotein A-I (ApoA-I) on atherosclerosis. ApoA-I is also a target for myeloperoxidase-mediated oxidation, leading in vitro to a loss of its ability to promote ATP-binding cassette transporter A1-dependent macrophage cholesterol efflux. Therefore, we hypothesized that myeloperoxidase-mediated ApoA-I oxidation would impair its promotion of reverse cholesterol transport in vivo and the beneficial effects on atherosclerotic plaques.
ApoA-I(-/-) or apolipoprotein E-deficient mice were subcutaneously injected with native human ApoA-I, oxidized human ApoA-I (myeloperoxidase/hydrogen peroxide/chloride treated), or carrier. Although early postinjection (8 hours) levels of total ApoA-I in plasma were similar for native versus oxidized human ApoA-I, native ApoA-I primarily resided within the high-density lipoprotein fraction, whereas the majority of oxidized human ApoA-I was highly cross-linked and not high-density lipoprotein particle associated, consistent with impaired ATP-binding cassette transporter A1 interaction. In ApoA-I(-/-) mice, ApoA-I oxidation significantly impaired reverse cholesterol transport in vivo. In advanced aortic root atherosclerotic plaques of apolipoprotein E-deficient mice, native ApoA-I injections led to significant decreases in lipid content, macrophage number, and an increase in collagen content; in contrast, oxidized human ApoA-I failed to mediate these changes. The decrease in plaque macrophages with native ApoA-I was accompanied by significant induction of their chemokine receptor CCR7. Furthermore, only native ApoA-I injections led to a significant reduction of inflammatory M1 and increase in anti-inflammatory M2 macrophage markers in the plaques.
Myeloperoxidase-mediated oxidation renders ApoA-I dysfunctional and unable to (1) promote reverse cholesterol transport, (2) mediate beneficial changes in the composition of atherosclerotic plaques, and (3) pacify the inflammatory status of plaque macrophages.
临床前和临床研究表明,载脂蛋白 A-I(ApoA-I)输注对动脉粥样硬化有益。ApoA-I 也是髓过氧化物酶介导氧化的靶点,导致其在体外丧失促进 ATP 结合盒转运蛋白 A1 依赖性巨噬细胞胆固醇流出的能力。因此,我们假设髓过氧化物酶介导的 ApoA-I 氧化会损害其在体内促进胆固醇逆转运的能力,并对动脉粥样硬化斑块产生有益影响。
载脂蛋白 A-I(-/-)或载脂蛋白 E 缺陷小鼠皮下注射天然人 ApoA-I、氧化人 ApoA-I(髓过氧化物酶/过氧化氢/氯处理)或载体。尽管注射后 8 小时(早期),天然与人 ApoA-I 的血浆总 ApoA-I 水平相似,但天然 ApoA-I 主要存在于高密度脂蛋白部分,而大多数氧化人 ApoA-I 高度交联且不与高密度脂蛋白颗粒相关,这与 ATP 结合盒转运蛋白 A1 相互作用受损一致。在 ApoA-I(-/-)小鼠中,ApoA-I 氧化显著损害体内胆固醇逆转运。在载脂蛋白 E 缺陷小鼠的主动脉根部动脉粥样硬化斑块中,天然 ApoA-I 注射导致脂质含量、巨噬细胞数量减少和胶原含量增加;相比之下,氧化人 ApoA-I 未能介导这些变化。天然 ApoA-I 注射导致斑块巨噬细胞数量减少,同时伴随其趋化因子受体 CCR7 的显著诱导。此外,只有天然 ApoA-I 注射可导致斑块中炎症性 M1 标志物减少和抗炎性 M2 标志物增加。
髓过氧化物酶介导的氧化使 ApoA-I 功能失调,无法(1)促进胆固醇逆转运,(2)介导动脉粥样硬化斑块组成的有益变化,(3)平息斑块巨噬细胞的炎症状态。