Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit (M.F.L., P.G.Y., H.T.), Vanderbilt University School of Medicine, Nashville, TN.
Department of Pharmacology (M.F.L., S.S.D.), Vanderbilt University School of Medicine, Nashville, TN.
Circ Res. 2023 May 26;132(11):1521-1545. doi: 10.1161/CIRCRESAHA.123.321563. Epub 2023 May 25.
Epidemiologic studies detected an inverse relationship between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major risk factor for ASCVD and suggesting atheroprotective functions of HDL. However, the role of HDL-C as a mediator of risk for ASCVD has been called into question by the failure of HDL-C-raising drugs to reduce cardiovascular events in clinical trials. Progress in understanding the heterogeneous nature of HDL particles in terms of their protein, lipid, and small RNA composition has contributed to the realization that HDL-C levels do not necessarily reflect HDL function. The most examined atheroprotective function of HDL is reverse cholesterol transport, whereby HDL removes cholesterol from plaque macrophage foam cells and delivers it to the liver for processing and excretion into bile. Indeed, in several studies, HDL has shown inverse associations between HDL cholesterol efflux capacity and ASCVD in humans. Inflammation plays a key role in the pathogenesis of atherosclerosis and vulnerable plaque formation, and a fundamental function of HDL is suppression of inflammatory signaling in macrophages and other cells. Oxidation is also a critical process to ASCVD in promoting atherogenic oxidative modifications of LDL (low-density lipoprotein) and cellular inflammation. HDL and its proteins including apoAI (apolipoprotein AI) and PON1 (paraoxonase 1) prevent cellular oxidative stress and LDL modifications. Importantly, HDL in humans with ASCVD is oxidatively modified rendering HDL dysfunctional and proinflammatory. Modification of HDL with reactive carbonyl species, such as malondialdehyde and isolevuglandins, dramatically impairs the antiatherogenic functions of HDL. Importantly, treatment of murine models of atherosclerosis with scavengers of reactive dicarbonyls improves HDL function and reduces systemic inflammation, atherosclerosis development, and features of plaque instability. Here, we discuss the HDL antiatherogenic functions in relation to oxidative modifications and the potential of reactive dicarbonyl scavengers as a therapeutic approach for ASCVD.
流行病学研究发现,高密度脂蛋白胆固醇(HDL-C)水平与动脉粥样硬化性心血管疾病(ASCVD)呈负相关,将 HDL-C 确定为 ASCVD 的主要危险因素,并提示 HDL 具有抗动脉粥样硬化作用。然而,由于升高 HDL-C 的药物在临床试验中未能降低心血管事件,HDL-C 作为 ASCVD 风险的中介作用受到质疑。人们对 HDL 颗粒在蛋白质、脂质和小 RNA 组成方面的异质性有了更深入的了解,这有助于认识到 HDL-C 水平不一定反映 HDL 功能。HDL 最受研究的抗动脉粥样硬化作用是胆固醇逆转运,即 HDL 从斑块巨噬细胞泡沫细胞中去除胆固醇,并将其运送到肝脏进行处理,然后以胆汁的形式排泄。事实上,在几项研究中,HDL 与人类的 HDL 胆固醇流出能力和 ASCVD 呈负相关。炎症在动脉粥样硬化和易损斑块形成的发病机制中起着关键作用,而 HDL 的一个基本功能是抑制巨噬细胞和其他细胞中的炎症信号。氧化也是 ASCVD 的一个关键过程,它促进 LDL(低密度脂蛋白)的致动脉粥样硬化氧化修饰和细胞炎症。HDL 及其蛋白质,包括载脂蛋白 AI(apoAI)和 PON1(对氧磷酶 1),可防止细胞氧化应激和 LDL 修饰。重要的是,患有 ASCVD 的人体内的 HDL 发生氧化修饰,使其功能失调并具有促炎作用。活性羰基物质(如丙二醛和异前列烷)修饰 HDL,极大地损害了 HDL 的抗动脉粥样硬化功能。重要的是,用活性二羰基化合物清除剂治疗动脉粥样硬化的小鼠模型可改善 HDL 功能并降低全身炎症、动脉粥样硬化发展和斑块不稳定的特征。在这里,我们讨论了 HDL 的抗动脉粥样硬化作用与氧化修饰的关系,以及活性二羰基化合物清除剂作为 ASCVD 治疗方法的潜力。