Suppr超能文献

光呼吸过程中的乙醛酸脱羧。

Glyoxylate decarboxylation during photorespiration.

机构信息

Department of Botany, Botany School, University of Cambridge, CB2 3EA, Cambridge, U.K..

出版信息

Planta. 1978 Jan;144(1):31-7. doi: 10.1007/BF00385004.

Abstract

At 25° C under aerobic conditions with or without gluamate 10% of the [1-(14)C]glycollate oxidised in spinach leaf peroxisomes was released as (14)CO2. Without glutamate only 5% of the glycollate was converted to glycine, but with it over 80% of the glycollate was metabolised to glycine. CO2 release was probably not due to glycine breakdown in these preparations since glycine decarboxylase activity was not detected. Addition of either unlabelled glycine or isonicotinyl hydrazide (INH) did not reduce (14)CO2 release from either [1-(14)C]glycollate or [1-(14)C]glyoxylate. Furthermore, the amount of "available H2O2" (Grodzinski and Butt, 1976) was sufficient to account for all of the CO2 release by breakdown of glyoxylate. Peroxisomal glycollate metabolism was unaffected by light and isolated leaf chloroplasts alone did not metabolise glycollate. However, in a mixture of peroxisomes and illuminated chloroplasts the rate of glycollate decarboxylation increased three fold while glycine synthesis was reduced by 40%. Although it was not possible to measure "available H2O2" directly, the data are best explained by glyoxylate decarboxylation. Catalase reduced CO2 release and enhanced glycine synthesis. In addition, when a model system in which an active preparation of purified glucose oxidase generating H2O2 at a known rate was used to replace the chloroplasts, similar rates of (14)CO2 release and [(14)C]glycine synthesis from [1-(14)C]glycollate were measured. It is argued that in vivo glyoxylate metabolism in leaf peroxisomes is a key branch point of the glycollate pathway and that a portion of the photorespired CO2 arises during glyoxylate decarboxylation under the action of H2O2. The possibility that peroxisomal catalase exerts a peroxidative function during this process is discussed.

摘要

在 25°C 有氧条件下,无论是否添加 10%的谷氨酸,菠菜叶过氧化物体中[1-(14)C]乙醇酸的 1/4 被氧化为(14)CO2。没有谷氨酸时,只有 5%的乙醇酸转化为甘氨酸,但有谷氨酸时,超过 80%的乙醇酸代谢为甘氨酸。CO2 释放可能不是由于这些制剂中甘氨酸的分解,因为未检测到甘氨酸脱羧酶活性。添加未标记的甘氨酸或异烟酰肼(INH)均不会减少[1-(14)C]乙醇酸或[1-(14)C]乙醛酸从(14)CO2 的释放。此外,“可用 H2O2”(Grodzinski 和 Butt,1976)的量足以解释乙醛酸分解产生的所有 CO2 释放。过氧化物体乙醇酸代谢不受光照影响,单独分离的叶绿体本身不代谢乙醇酸。然而,在过氧化物体和光照叶绿体的混合物中,乙醇酸脱羧的速率增加了三倍,而甘氨酸合成减少了 40%。虽然无法直接测量“可用 H2O2”,但数据最好通过乙醛酸脱羧来解释。过氧化氢酶降低了 CO2 的释放并增强了甘氨酸的合成。此外,当使用一种活性的纯化葡萄糖氧化酶制剂以已知的速率产生 H2O2 的模型系统代替叶绿体时,从[1-(14)C]乙醇酸测量到类似的(14)CO2 释放和[(14)C]甘氨酸合成速率。有观点认为,在叶片过氧化物体中,乙醛酸的代谢是乙醇酸途径的一个关键分支点,一部分光呼吸产生的 CO2 是在 H2O2 的作用下通过乙醛酸脱羧产生的。讨论了过氧化物体过氧化氢酶在这个过程中是否发挥过氧化物酶功能的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验