Seattle Biomedical Research Institute, Seattle, Washington, United States of America ; Department of Global Health, University of Washington, Seattle, Washington, United States of America.
Seattle Biomedical Research Institute, Seattle, Washington, United States of America.
PLoS Biol. 2014 Jan;12(1):e1001746. doi: 10.1371/journal.pbio.1001746. Epub 2014 Jan 7.
The majority of Mycobacterium tuberculosis (Mtb) infections are clinically latent, characterized by drug tolerance and little or no bacterial replication. Low oxygen tension is a major host factor inducing bacteriostasis, but the molecular mechanisms driving oxygen-dependent replication are poorly understood. Here, we tested the role of serine/threonine phosphorylation in the Mtb response to altered oxygen status, using an in vitro model of latency (hypoxia) and reactivation (reaeration). Broad kinase inhibition compromised survival of Mtb in reaeration. Activity-based protein profiling and genetic mutation identified PknB as the kinase critical for surviving hypoxia. Mtb replication was highly sensitive to changes in PknB levels in aerated culture, and even more so in hypoxia. A mutant overexpressing PknB specifically in hypoxia showed a 10-fold loss in viability and gross morphological defects in low oxygen conditions. In contrast, chemically reducing PknB activity during hypoxia specifically compromised resumption of growth during reaeration. These data support a model in which PknB activity is reduced to achieve bacteriostasis, and elevated when replication resumes. Together, these data show that phosphosignaling controls replicative transitions associated with latency and reactivation, that PknB is a major regulator of these transitions, and that PknB could provide a highly vulnerable therapeutic target at every step of the Mtb life cycle-active disease, latency, and reactivation.
大多数结核分枝杆菌(Mtb)感染是临床潜伏的,其特征是耐药性和细菌复制很少或没有。低氧张力是诱导抑菌的主要宿主因素,但驱动氧依赖性复制的分子机制仍不清楚。在这里,我们使用潜伏(缺氧)和再激活(复氧)的体外模型,测试了丝氨酸/苏氨酸磷酸化在 Mtb 对氧状态改变的反应中的作用。广泛的激酶抑制会损害 Mtb 在复氧中的存活。基于活性的蛋白质谱分析和遗传突变鉴定出 PknB 是在缺氧条件下生存的关键激酶。Mtb 在有氧培养中对 PknB 水平的变化非常敏感,在低氧条件下更为敏感。在缺氧条件下特异性过表达 PknB 的突变体在低氧条件下的存活率降低了 10 倍,并且在形态上存在严重缺陷。相比之下,在缺氧期间用化学方法降低 PknB 的活性会特异性地损害复氧期间生长的恢复。这些数据支持这样一种模型,即 PknB 活性降低以实现抑菌,并且在复制恢复时升高。总之,这些数据表明磷酸信号转导控制与潜伏和再激活相关的复制转换,PknB 是这些转换的主要调节剂,并且 PknB 可以在 Mtb 生命周期的每个阶段提供一个高度脆弱的治疗靶点——活动性疾病、潜伏和再激活。