Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia.
AMB Express. 2014 Jan 10;4(1):3. doi: 10.1186/2191-0855-4-3.
The design of biomaterial surfaces relies heavily on the ability to accurately measure and visualize the three-dimensional surface nanoarchitecture of substrata. Here, we present a technique for producing three-dimensional surface models using displacement maps that are based on the data obtained from two-dimensional analyses. This technique is particularly useful when applied to scanning electron micrographs that have been calibrated using atomic force microscopy (AFM) roughness data. The evaluation of four different surface types, including thin titanium films, silicon wafers, polystyrene cell culture dishes and dragonfly wings confirmed that this technique is particularly effective for the visualization of conductive surfaces such as metallic titanium. The technique is particularly useful for visualizing surfaces that cannot be easily analyzed using AFM. The speed and ease with which electron micrographs can be recorded, combined with a relatively simple process for generating displacement maps, make this technique useful for the assessment of the surface topography of biomaterials.
生物材料表面的设计在很大程度上依赖于能够准确测量和可视化衬底的三维表面纳米结构的能力。在这里,我们提出了一种使用基于从二维分析获得的数据的位移图来生成三维表面模型的技术。当将该技术应用于已经使用原子力显微镜 (AFM) 粗糙度数据进行校准的扫描电子显微镜图像时,该技术特别有用。对包括钛薄膜、硅晶片、聚苯乙烯细胞培养皿和蜻蜓翅膀在内的四种不同表面类型的评估证实,该技术特别适用于可视化诸如金属钛等导电表面。该技术对于可视化难以使用 AFM 进行分析的表面特别有用。电子显微镜图像可以快速且轻松地记录,并且生成位移图的过程相对简单,这使得该技术对于评估生物材料的表面形貌非常有用。