Institute for Building Materials, ETH Zurich, Zurich, Switzerland.
Plant Methods. 2014 Jan 10;10(1):1. doi: 10.1186/1746-4811-10-1.
Besides classical utilization of wood and paper, lignocellulosic biomass has become increasingly important with regard to biorefinery, biofuel production and novel biomaterials. For these new applications the macromolecular assembly of cell walls is of utmost importance and therefore further insights into the arrangement of the molecules on the nanolevel have to be gained. Cell wall recalcitrance against enzymatic degradation is one of the key issues, since an efficient degradation of lignocellulosic plant material is probably the most crucial step in plant conversion to energy. A limiting factor for in-depth analysis is that high resolution characterization techniques provide structural but hardly chemical information (e.g. Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM)), while chemical characterization leads to a disassembly of the cell wall components or does not reach the required nanoscale resolution (Fourier Tranform Infrared Spectroscopy (FT-IR), Raman Spectroscopy).
Here we use for the first time Scanning Near-Field Optical Microscopy (SNOM in reflection mode) on secondary plant cell walls and reveal a segmented circumferential nanostructure. This pattern in the 100 nm range was found in the secondary cell walls of a softwood (spruce), a hardwood (beech) and a grass (bamboo) and is thus concluded to be consistent among various plant species. As the nanostructural pattern is not visible in classical AFM height and phase images it is proven that the contrast is not due to changes in surfaces topography, but due to differences in the molecular structure.
Comparative analysis of model substances of casted cellulose nanocrystals and spin coated lignin indicate, that the SNOM signal is clearly influenced by changes in lignin distribution or composition. Therefore and based on the known interaction of lignin and visible light (e.g. fluorescence and resonance effects), we assume the elucidated nanoscale structure to reflect variations in lignification within the secondary cell wall.
除了传统的木材和纸张利用外,木质纤维素生物质在生物炼制、生物燃料生产和新型生物材料方面变得越来越重要。对于这些新的应用,细胞壁的高分子组装至关重要,因此需要进一步深入了解分子在纳米级别的排列。细胞壁对酶降解的抗性是一个关键问题,因为木质纤维素植物材料的有效降解可能是植物转化为能源的最关键步骤。深入分析的一个限制因素是,高分辨率表征技术提供的结构信息很少,而几乎没有化学信息(例如透射电子显微镜(TEM)、原子力显微镜(AFM)),而化学表征会导致细胞壁成分解体,或者无法达到所需的纳米级分辨率(傅里叶变换红外光谱(FT-IR)、拉曼光谱)。
我们首次在次生植物细胞壁上使用扫描近场光学显微镜(反射模式下的 SNOM)并揭示了一种分段的圆周纳米结构。这种在 100nm 范围内的模式在软木(云杉)、硬木(山毛榉)和草(竹子)的次生细胞壁中被发现,因此可以得出结论,它在各种植物物种中是一致的。由于经典 AFM 高度和相位图像中看不到纳米结构图案,因此可以证明对比度不是由于表面形貌的变化,而是由于分子结构的差异。
对铸型纤维素纳米晶体和旋涂木质素模型物质的比较分析表明,SNOM 信号明显受到木质素分布或组成变化的影响。因此,基于已知的木质素与可见光的相互作用(例如荧光和共振效应),我们假设所阐明的纳米结构反映了次生细胞壁中木质化的变化。