Suppr超能文献

利用 iTRAQ 技术研究水稻根系蛋白质组为深入了解植物耐铝机制提供了综合见解。

Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants.

机构信息

State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.

Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100101, China.

出版信息

J Proteomics. 2014 Feb 26;98:189-205. doi: 10.1016/j.jprot.2013.12.023. Epub 2014 Jan 9.

Abstract

UNLABELLED

One of the major limitations to crop growth on acid soils is the prevalence of soluble aluminum ions (Al(3+)). Rice (Oryza sativa L.) has been reported to be highly Al tolerant; however, large-scale proteomic data of rice in response to Al(3+) are still very scanty. Here, we used an iTRAQ-based quantitative proteomics approach for comparative analysis of the expression profiles of proteins in rice roots in response to Al(3+) at an early phase. A total of 700 distinct proteins (homologous proteins grouped together) with >95% confidence were identified. Among them, 106 proteins were differentially expressed upon Al(3+) toxicity in sensitive and tolerant cultivars. Bioinformatics analysis indicated that glycolysis/gluconeogenesis was the most significantly up-regulated biochemical process in response to excess Al(3+). The mRNA levels of eight proteins mapped in the glycolysis/gluconeogenesis were further analyzed by qPCR and the expression levels of all the eight genes were higher in tolerant cultivar than in sensitive cultivar, suggesting that these compounds may promote Al tolerance by modulating the production of available energy. Although the exact roles of these putative tolerance proteins remain to be examined, our data lead to a better understanding of the Al tolerance mechanisms in rice plants through the proteomics approach.

BIOLOGICAL SIGNIFICANCE

Aluminum (mainly Al(3+)) is one of the major limitations to the agricultural productivity on acid soils and causes heavy yield loss every year. Rice has been reported to be highly Al tolerant; however, the mechanisms of rice Al tolerance are still not fully understood. Here, a combined proteomics, bioinformatics and qPCR analysis revealed that Al(3+) invasion caused complex proteomic changes in rice roots involving energy, stress and defense, protein turnover, metabolism, signal transduction, transport and intracellular traffic, cell structure, cell growth/division, and transcription. Promotion of the glycolytic/gluconeogenetic pathway in roots appeared crucially important for Al tolerance. These results lead to a better understanding of the Al tolerance mechanisms in rice and help to improve plant performance on acid soils, eventually to increase the crop production.

摘要

未加标签

酸性土壤中作物生长的主要限制之一是可溶性铝离子(Al(3+))的普遍存在。据报道,水稻对铝具有高度耐受性;然而,关于水稻对 Al(3+)反应的大规模蛋白质组学数据仍然非常匮乏。在这里,我们使用基于 iTRAQ 的定量蛋白质组学方法,对水稻根系在早期对 Al(3+)的反应的蛋白质表达谱进行了比较分析。共鉴定出 700 种具有>95%置信度的独特蛋白质(同源蛋白质归为一组)。其中,在敏感和耐受品种中,有 106 种蛋白质在 Al(3+)毒性下差异表达。生物信息学分析表明,糖酵解/糖异生是对过量 Al(3+)响应的最显著上调的生化过程。通过 qPCR 进一步分析了糖酵解/糖异生中映射的 8 种蛋白质的 mRNA 水平,并且在耐受品种中所有 8 个基因的表达水平均高于敏感品种,这表明这些化合物可能通过调节可用能量的产生来促进 Al 耐受性。尽管这些假定的耐受蛋白的确切作用仍有待检验,但我们的数据通过蛋白质组学方法更好地理解了水稻植物的 Al 耐受机制。

生物学意义

铝(主要是 Al(3+))是酸性土壤中农业生产力的主要限制因素之一,每年都会导致严重的产量损失。据报道,水稻对铝具有高度耐受性;然而,水稻的铝耐受机制仍未完全了解。在这里,蛋白质组学、生物信息学和 qPCR 分析的综合分析表明,Al(3+)的入侵导致了水稻根系中复杂的蛋白质组变化,涉及能量、应激和防御、蛋白质周转、代谢、信号转导、运输和细胞内运输、细胞结构、细胞生长/分裂和转录。促进根系中的糖酵解/糖异生途径对 Al 耐受至关重要。这些结果使我们更好地理解了水稻的 Al 耐受机制,并有助于提高植物在酸性土壤中的性能,最终提高作物产量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验