Asiedu Marina N, Mejia Galo L, Hübner Christian A, Kaila Kai, Price Theodore J
Department of Pharmacology, The University of Arizona School of Medicine, Tucson, Arizona.
Friedrich-Schiller-University Jena, Institute of Human Genetics, Jena University Hospital, Jena, Germany.
J Pain. 2014 Apr;15(4):395-406. doi: 10.1016/j.jpain.2014.01.001. Epub 2014 Jan 9.
Peripheral nerve injury (PNI) negatively influences spinal gamma-aminobutyric acid (GABA)ergic networks via a reduction in the neuron-specific potassium-chloride (K(+)-Cl(-)) cotransporter (KCC2). This process has been linked to the emergence of neuropathic allodynia. In vivo pharmacologic and modeling studies show that a loss of KCC2 function results in a decrease in the efficacy of GABAA-mediated spinal inhibition. One potential strategy to mitigate this effect entails inhibition of carbonic anhydrase activity to reduce HCO3(-)-dependent depolarization via GABAA receptors when KCC2 function is compromised. We have tested this hypothesis here. Our results show that, similarly to when KCC2 is pharmacologically blocked, PNI causes a loss of analgesic effect for neurosteroid GABAA allosteric modulators at maximally effective doses in naïve mice in the tail-flick test. Remarkably, inhibition of carbonic anhydrase activity with intrathecal acetazolamide rapidly restores an analgesic effect for these compounds, suggesting an important role of carbonic anhydrase activity in regulating GABAA-mediated analgesia after PNI. Moreover, spinal acetazolamide administration leads to a profound reduction in the mouse formalin pain test, indicating that spinal carbonic anhydrase inhibition produces analgesia when primary afferent activity is driven by chemical mediators. Finally, we demonstrate that systemic administration of acetazolamide to rats with PNI produces an antiallodynic effect by itself and an enhancement of the peak analgesic effect with a change in the shape of the dose-response curve of the α1-sparing benzodiazepine L-838,417. Thus, carbonic anhydrase inhibition mitigates the negative effects of loss of KCC2 function after nerve injury in multiple species and through multiple administration routes resulting in an enhancement of analgesic effects for several GABAA allosteric modulators. We suggest that carbonic anhydrase inhibitors, many of which are clinically available, might be advantageously employed for the treatment of pathologic pain states.
Using behavioral pharmacology techniques, we show that spinal GABAA-mediated analgesia can be augmented, especially following nerve injury, via inhibition of carbonic anhydrases. Carbonic anhydrase inhibition alone also produces analgesia, suggesting these enzymes might be targeted for the treatment of pain.
周围神经损伤(PNI)通过降低神经元特异性氯化钾(K(+)-Cl(-))共转运体(KCC2)对脊髓γ-氨基丁酸(GABA)能网络产生负面影响。这一过程与神经性痛觉过敏的出现有关。体内药理学和建模研究表明,KCC2功能丧失导致GABAA介导的脊髓抑制作用减弱。当KCC2功能受损时,减轻这种效应的一种潜在策略是抑制碳酸酐酶活性,以减少通过GABAA受体的HCO3(-)依赖性去极化。我们在此对这一假设进行了测试。我们的结果表明,与药理学阻断KCC2时类似,PNI导致在甩尾试验中,天真小鼠对神经甾体GABAA变构调节剂在最大有效剂量下失去镇痛作用。值得注意的是,鞘内注射乙酰唑胺抑制碳酸酐酶活性可迅速恢复这些化合物的镇痛作用,表明碳酸酐酶活性在调节PNI后GABAA介导的镇痛中起重要作用。此外,脊髓给予乙酰唑胺可使小鼠福尔马林疼痛试验显著减轻,表明当初级传入活动由化学介质驱动时,脊髓碳酸酐酶抑制产生镇痛作用。最后,我们证明,对患有PNI的大鼠全身给予乙酰唑胺本身可产生抗痛觉过敏作用,并增强α1-保留型苯二氮䓬L-838,417剂量反应曲线形状改变时的峰值镇痛作用。因此,碳酸酐酶抑制减轻了神经损伤后多种物种中KCC2功能丧失的负面影响,并通过多种给药途径增强了几种GABAA变构调节剂的镇痛作用。我们认为,许多临床上可用的碳酸酐酶抑制剂可能有利于用于治疗病理性疼痛状态。
使用行为药理学技术,我们表明脊髓GABAA介导的镇痛作用可通过抑制碳酸酐酶得到增强,尤其是在神经损伤后。单独抑制碳酸酐酶也可产生镇痛作用,表明这些酶可能是疼痛治疗的靶点。