Division of Cellular and Molecular Neuroscience, Centre de recherche Université Laval Robert-Giffard, Québec, Québec, Canada.
PLoS Comput Biol. 2011 Sep;7(9):e1002149. doi: 10.1371/journal.pcbi.1002149. Epub 2011 Sep 8.
Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABA(A) receptors (GABA(A)Rs). The impact of changes in steady state Cl(-) gradient is relatively straightforward to understand, but how dynamic interplay between Cl(-) influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl(-) load on a fast time scale, whereas Cl(-)extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl(-) gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABA(A)R-mediated inhibition, but increasing GABA(A)R input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl(-). Furthermore, if spiking persisted despite the presence of GABA(A)R input, Cl(-) accumulation became accelerated because of the large Cl(-) driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl(-) and pH regulation. Several model predictions were tested and confirmed by Cl(-) imaging experiments. Our study has thus uncovered how Cl(-) regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K(-) accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention.
氯离子稳态是 GABA(A) 受体(GABA(A)R)介导抑制作用强度和稳健性的关键决定因素。稳态 Cl(-) 梯度变化的影响相对容易理解,但 Cl(-) 内流、扩散、外排之间的动态相互作用以及与其他离子物种的相互作用如何影响突触信号传递仍不确定。在这里,我们使用电扩散建模来研究这些过程之间的非线性相互作用。结果表明,扩散对于快速重新分配细胞内 Cl(-) 负荷至关重要,而 Cl(-) 外排控制稳态水平。扩散和外排之间的相互作用即使 KCC2 在整个细胞中均匀分布,也可以导致体树突 Cl(-) 梯度。降低 KCC2 活性会导致 GABA(A)R 介导的抑制作用降低,但增加 GABA(A)R 输入并不能完全补偿这种去抑制形式,因为 Cl(-) 的活性依赖性积累。此外,如果尽管存在 GABA(A)R 输入,但神经元仍持续放电,Cl(-) 积累会因放电期间出现的大 Cl(-) 驱动力而加速。由此产生的正反馈循环导致抑制作用灾难性失效。模拟还揭示了其他反馈回路,例如 Cl(-) 和 pH 调节之间的竞争。对几种模型预测进行了测试,并通过 [Cl(-)]i 成像实验进行了验证。因此,我们的研究揭示了 Cl(-) 调节如何取决于多种动态相互作用的机制。此外,该模型还揭示了,将 KCC2 活性增强到正常水平以上并不会对放电频率产生负面影响或导致明显的细胞外 K(-) 积累,这表明增强 KCC2 活性是一种有效的治疗干预策略。