Suppr超能文献

通过荧光激活分选分离的谷氨酸能小鼠脑突触体的蛋白质组学筛选。

Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting.

机构信息

Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

出版信息

EMBO J. 2014 Jan 13;33(2):157-70. doi: 10.1002/embj.201386120. Epub 2014 Jan 10.

Abstract

For decades, neuroscientists have used enriched preparations of synaptic particles called synaptosomes to study synapse function. However, the interpretation of corresponding data is problematic as synaptosome preparations contain multiple types of synapses and non-synaptic neuronal and glial contaminants. We established a novel Fluorescence Activated Synaptosome Sorting (FASS) method that substantially improves conventional synaptosome enrichment protocols and enables high-resolution biochemical analyses of specific synapse subpopulations. Employing knock-in mice with fluorescent glutamatergic synapses, we show that FASS isolates intact ultrapure synaptosomes composed of a resealed presynaptic terminal and a postsynaptic density as assessed by light and electron microscopy. FASS synaptosomes contain bona fide glutamatergic synapse proteins but are almost devoid of other synapse types and extrasynaptic or glial contaminants. We identified 163 enriched proteins in FASS samples, of which FXYD6 and Tpd52 were validated as new synaptic proteins. FASS purification thus enables high-resolution biochemical analyses of specific synapse subpopulations in health and disease.

摘要

几十年来,神经科学家一直使用称为突触体的富含突触颗粒的制剂来研究突触功能。然而,由于突触体制剂中含有多种类型的突触和非突触神经元和神经胶质污染物,因此相应数据的解释存在问题。我们建立了一种新颖的荧光激活突触体分选(FASS)方法,该方法大大改进了传统的突触体富集方案,并能够对特定突触亚群进行高分辨率的生化分析。利用带有荧光谷氨酸能突触的基因敲入小鼠,我们表明 FASS 可分离出完整的超纯突触体,这些突触体由重新封闭的突触前末端和突触后密度组成,可通过光和电子显微镜进行评估。FASS 突触体包含真正的谷氨酸能突触蛋白,但几乎没有其他类型的突触和突触外或神经胶质污染物。我们在 FASS 样本中鉴定出 163 种富集蛋白,其中 FXYD6 和 Tpd52 被验证为新的突触蛋白。因此,FASS 纯化可实现健康和疾病状态下特定突触亚群的高分辨率生化分析。

相似文献

1
Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting.
EMBO J. 2014 Jan 13;33(2):157-70. doi: 10.1002/embj.201386120. Epub 2014 Jan 10.
2
Purification of Synaptosome Populations Using Fluorescence-Activated Synaptosome Sorting.
Methods Mol Biol. 2017;1538:121-134. doi: 10.1007/978-1-4939-6688-2_10.
3
The proteomic landscape of synaptic diversity across brain regions and cell types.
Cell. 2023 Nov 22;186(24):5411-5427.e23. doi: 10.1016/j.cell.2023.09.028. Epub 2023 Nov 1.
4
Proteomic comparison of different synaptosome preparation procedures.
Amino Acids. 2020 Dec;52(11-12):1529-1543. doi: 10.1007/s00726-020-02912-6. Epub 2020 Nov 19.
5
In vivo imaging of intersynaptic vesicle exchange using VGLUT1 Venus knock-in mice.
J Neurosci. 2011 Oct 26;31(43):15544-59. doi: 10.1523/JNEUROSCI.2073-11.2011.
6
Using FASS-LTP in postmortem mice brain tissues to assess pathological synaptic function.
J Neurosci Methods. 2024 Sep;409:110219. doi: 10.1016/j.jneumeth.2024.110219. Epub 2024 Jul 14.
7
Pharmacological Rescue of Long-Term Potentiation in Alzheimer Diseased Synapses.
J Neurosci. 2017 Feb 1;37(5):1197-1212. doi: 10.1523/JNEUROSCI.2774-16.2016. Epub 2016 Dec 16.
9
GABA(B) receptors at glutamatergic synapses in the rat striatum.
Neuroscience. 2005;136(4):1083-95. doi: 10.1016/j.neuroscience.2005.07.013. Epub 2005 Oct 14.

引用本文的文献

1
An integrated transcriptomic and proteomic map of the mouse hippocampus at synaptic resolution.
Nat Commun. 2025 Aug 26;16(1):7942. doi: 10.1038/s41467-025-63119-5.
2
Endogenous SNAP-Tagging of Munc13‑1 for Monitoring Synapse Nanoarchitecture.
JACS Au. 2025 May 23;5(6):2475-2490. doi: 10.1021/jacsau.4c00946. eCollection 2025 Jun 23.
4
ATG9A vesicles are a subtype of intracellular nanovesicle.
J Cell Sci. 2025 Apr 1;138(7). doi: 10.1242/jcs.263852. Epub 2025 Apr 9.
7
Understanding the molecular diversity of synapses.
Nat Rev Neurosci. 2025 Feb;26(2):65-81. doi: 10.1038/s41583-024-00888-w. Epub 2024 Dec 5.
8
Understanding ubiquitination in neurodevelopment by integrating insights across space and time.
Nat Struct Mol Biol. 2025 Jan;32(1):14-22. doi: 10.1038/s41594-024-01422-3. Epub 2024 Dec 4.
9
State of the Art in Sub-Phenotyping Midbrain Dopamine Neurons.
Biology (Basel). 2024 Sep 3;13(9):690. doi: 10.3390/biology13090690.
10
Synaptic proteomics decode novel molecular landscape in the brain.
Front Mol Neurosci. 2024 Apr 25;17:1361956. doi: 10.3389/fnmol.2024.1361956. eCollection 2024.

本文引用的文献

2
Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism.
Science. 2012 Oct 5;338(6103):128-32. doi: 10.1126/science.1224159. Epub 2012 Sep 13.
3
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
4
The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses.
Curr Opin Neurobiol. 2012 Jun;22(3):412-22. doi: 10.1016/j.conb.2012.02.012. Epub 2012 Mar 15.
5
In vivo imaging of intersynaptic vesicle exchange using VGLUT1 Venus knock-in mice.
J Neurosci. 2011 Oct 26;31(43):15544-59. doi: 10.1523/JNEUROSCI.2073-11.2011.
7
Glutamate receptor dynamics and protein interaction: lessons from the NMDA receptor.
Mol Cell Neurosci. 2011 Dec;48(4):298-307. doi: 10.1016/j.mcn.2011.05.009. Epub 2011 May 26.
8
Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina.
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3053-8. doi: 10.1073/pnas.1006946108. Epub 2011 Jan 31.
9
VDAC, a multi-functional mitochondrial protein regulating cell life and death.
Mol Aspects Med. 2010 Jun;31(3):227-85. doi: 10.1016/j.mam.2010.03.002. Epub 2010 Mar 23.
10
The architecture of an excitatory synapse.
J Cell Sci. 2010 Mar 15;123(Pt 6):819-23. doi: 10.1242/jcs.052696.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验