Perdikaris Paris, Karniadakis George Em
Division of Applied Mathematics, Brown University, Providence, RI, USA,
Ann Biomed Eng. 2014 May;42(5):1012-23. doi: 10.1007/s10439-014-0970-3. Epub 2014 Jan 11.
In this work we employ integer- and fractional-order viscoelastic models in a one-dimensional blood flow solver, and study their behavior by presenting an in-silico study on a large patient-specific cranial network. The use of fractional-order models is motivated by recent experimental studies indicating that such models provide a new flexible alternative to fitting biological tissue data. This is attributed to their inherent ability to control the interplay between elastic energy storage and viscous dissipation by tuning a single parameter, the fractional order α, as well as to account for a continuous viscoelastic relaxation spectrum. We perform simulations using four viscoelastic parameter data-sets aiming to compare different viscoelastic models and highlight the important role played by the fractional order. Moreover, we carry out a detailed global stochastic sensitivity analysis study to quantify uncertainties of the input parameters that define each wall model. Our results confirm that the effect of fractional models on hemodynamics is primarily controlled by the fractional order, which affects pressure wave propagation by introducing viscoelastic dissipation in the system.
在这项工作中,我们在一维血流求解器中采用整数阶和分数阶粘弹性模型,并通过对一个大型患者特异性颅脑血管网络进行计算机模拟研究来探究它们的行为。分数阶模型的使用是受近期实验研究的推动,这些研究表明此类模型为拟合生物组织数据提供了一种新的灵活选择。这归因于它们通过调整单个参数——分数阶α来控制弹性能量存储和粘性耗散之间相互作用的固有能力,以及考虑连续的粘弹性松弛谱的能力。我们使用四个粘弹性参数数据集进行模拟,旨在比较不同的粘弹性模型,并突出分数阶所起的重要作用。此外,我们进行了详细的全局随机敏感性分析研究,以量化定义每个血管壁模型的输入参数的不确定性。我们的结果证实,分数阶模型对血液动力学的影响主要由分数阶控制,分数阶通过在系统中引入粘弹性耗散来影响压力波传播。