Suppr超能文献

动脉粘弹性:一种分数阶导数模型。

Arterial viscoelasticity: a fractional derivative model.

作者信息

Craiem Damien O, Armentano Ricardo L

机构信息

Favaloro University, Avenida Belgrano 1723 (1093), Buenos Aires, Argentina.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1098-101. doi: 10.1109/IEMBS.2006.259709.

Abstract

Arteries are viscoelastic materials. Viscoelastic laws are fully characterized by measuring a complex modulus. Arterial mechanics can be described using stress-strain dynamic measurements applied to the particular cylindrical geometry. Most materials show an energy loss per cycle that increases steadily with frequency. By contrast, the frequency modulus response in arteries presents a frequency independence describing a plateau above a corner frequency near 4Hz. Traditional methods to fit this response include several spring and dashpot elements to model integer order differential equations in time domain. Recently, fractional derivative models proved to be efficient to describe rheological tissues, reducing the number of parameters and showing a natural power-law response. In this work a fractional derivative model with 4-parameter was selected to describe the arterial wall mechanics in-vivo. Strain and stress were measured simultaneously in an anaesthetized sheep. A fractional model was applied. The order resulted alpha=0.12, confirming the manifest elastic response of the aorta. The fractional derivative model proved to naturally mimic the elastic modulus spectrum with only 4 parameters and a reasonable small computational effort.

摘要

动脉是粘弹性材料。粘弹性定律通过测量复模量来完全表征。动脉力学可以通过应用于特定圆柱几何形状的应力 - 应变动态测量来描述。大多数材料显示出每周期的能量损失随频率稳步增加。相比之下,动脉中的频率模量响应呈现出频率独立性,描述了在接近4Hz的转折频率以上的一个平台。拟合这种响应的传统方法包括几个弹簧和阻尼元件,以在时域中对整数阶微分方程进行建模。最近,分数阶导数模型被证明能有效地描述流变组织,减少参数数量并显示出自然的幂律响应。在这项工作中,选择了一个具有4个参数的分数阶导数模型来描述体内动脉壁力学。在一只麻醉的绵羊中同时测量应变和应力。应用了一个分数模型。结果阶数α = 0.12,证实了主动脉明显的弹性响应。分数阶导数模型被证明仅用4个参数就能自然地模拟弹性模量谱,并且计算量合理小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验