Suppr超能文献

特定患者一维动脉网络模型中的不确定性量化:基于EnKF的流入估计器

Uncertainty Quantification in a Patient-Specific One-Dimensional Arterial Network Model: EnKF-Based Inflow Estimator.

作者信息

Arnold Andrea, Battista Christina, Bia Daniel, German Yanina Zócalo, Armentano Ricardo L, Tran Hien, Olufsen Mette S

机构信息

Department of Mathematics, North Carolina State University, 2108 SAS Hall, 2311 Stinson Drive, Box 8205, Raleigh, NC 27695-8205 e-mail:

DILIsym Services, Inc., Six Davis Drive, Research Triangle Park, NC 27709 e-mail:

出版信息

J Verif Valid Uncertain Quantif. 2017 Mar;2(1):0110021-1100214. doi: 10.1115/1.4035918. Epub 2017 Feb 22.

Abstract

Successful clinical use of patient-specific models for cardiovascular dynamics depends on the reliability of the model output in the presence of input uncertainties. For 1D fluid dynamics models of arterial networks, input uncertainties associated with the model output are related to the specification of vessel and network geometry, parameters within the fluid and wall equations, and parameters used to specify inlet and outlet boundary conditions. This study investigates how uncertainty in the flow profile applied at the inlet boundary of a 1D model affects area and pressure predictions at the center of a single vessel. More specifically, this study develops an iterative scheme based on the ensemble Kalman filter (EnKF) to estimate the temporal inflow profile from a prior distribution of curves. The EnKF-based inflow estimator provides a measure of uncertainty in the size and shape of the estimated inflow, which is propagated through the model to determine the corresponding uncertainty in model predictions of area and pressure. Model predictions are compared to ex vivo area and blood pressure measurements in the ascending aorta, the carotid artery, and the femoral artery of a healthy male Merino sheep. Results discuss dynamics obtained using a linear and a nonlinear viscoelastic wall model.

摘要

针对心血管动力学的患者特异性模型的成功临床应用,取决于在存在输入不确定性的情况下模型输出的可靠性。对于动脉网络的一维流体动力学模型,与模型输出相关的输入不确定性与血管和网络几何形状的指定、流体和管壁方程中的参数以及用于指定入口和出口边界条件的参数有关。本研究调查了应用于一维模型入口边界的流量剖面不确定性如何影响单个血管中心处的面积和压力预测。更具体地说,本研究基于集合卡尔曼滤波器(EnKF)开发了一种迭代方案,以根据曲线的先验分布估计时间流入剖面。基于EnKF的流入估计器提供了估计流入大小和形状的不确定性度量,该不确定性通过模型传播,以确定面积和压力模型预测中的相应不确定性。将模型预测与健康雄性美利奴绵羊升主动脉、颈动脉和股动脉的离体面积和血压测量结果进行比较。结果讨论了使用线性和非线性粘弹性壁模型获得的动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验