Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
Department of Microbiology & Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), Faculty of Medicine/CMU, University of Geneva, Geneva, Switzerland.
PLoS Biol. 2013 Dec;11(12):e1001749. doi: 10.1371/journal.pbio.1001749. Epub 2013 Dec 31.
What are the minimal requirements to sustain an asymmetric cell cycle? Here we use mathematical modelling and forward genetics to reduce an asymmetric cell cycle to its simplest, primordial components. In the Alphaproteobacterium Caulobacter crescentus, cell cycle progression is believed to be controlled by a cyclical genetic circuit comprising four essential master regulators. Unexpectedly, our in silico modelling predicted that one of these regulators, GcrA, is in fact dispensable. We confirmed this experimentally, finding that ΔgcrA cells are viable, but slow-growing and elongated, with the latter mostly due to an insufficiency of a key cell division protein. Furthermore, suppressor analysis showed that another cell cycle regulator, the methyltransferase CcrM, is similarly dispensable with simultaneous gcrA/ccrM disruption ameliorating the cytokinetic and growth defect of ΔgcrA cells. Within the Alphaproteobacteria, gcrA and ccrM are consistently present or absent together, rather than either gene being present alone, suggesting that gcrA/ccrM constitutes an independent, dispensable genetic module. Together our approaches unveil the essential elements of a primordial asymmetric cell cycle that should help illuminate more complex cell cycles.
维持不对称细胞周期的最小要求是什么?在这里,我们使用数学建模和正向遗传学将不对称细胞周期简化为其最基本的原始组成部分。在α变形菌新月柄杆菌中,细胞周期的进展被认为是由一个周期性的遗传回路控制的,该回路包含四个必需的主要调控因子。出乎意料的是,我们的计算机模拟预测,其中一个调控因子 GcrA 实际上是可有可无的。我们通过实验证实了这一点,发现ΔgcrA 细胞是存活的,但生长缓慢且伸长,后者主要是由于关键细胞分裂蛋白的不足。此外,抑制因子分析表明,另一个细胞周期调控因子甲基转移酶 CcrM 也是可有可无的,同时敲除 gcrA/ccrM 可以改善 ΔgcrA 细胞的细胞分裂和生长缺陷。在α变形菌中,gcrA 和 ccrM 总是一起存在或缺失,而不是单独存在任何一个基因,这表明 gcrA/ccrM 构成了一个独立的、可有可无的遗传模块。我们的方法共同揭示了原始不对称细胞周期的基本要素,这应该有助于阐明更复杂的细胞周期。