Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China ; Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China ; University of Chinese Academy of Sciences, Beijing, China.
PLoS One. 2014 Jan 9;9(1):e84682. doi: 10.1371/journal.pone.0084682. eCollection 2014.
Ferns usually have relatively lower photosynthetic potential than angiosperms. However, it is unclear whether low photosynthetic potential of ferns is linked to leaf water supply. We hypothesized that there is an evolutionary association of leaf water transport capacity with photosynthesis and stomatal density in ferns. In the present study, a series of functional traits relating to leaf anatomy, hydraulics and physiology were assessed in 19 terrestrial and 11 epiphytic ferns in a common garden, and analyzed by a comparative phylogenetics method. Compared with epiphytic ferns, terrestrial ferns had higher vein density (Dvein), stomatal density (SD), stomatal conductance (gs), and photosynthetic capacity (Amax), but lower values for lower epidermal thickness (LET) and leaf thickness (LT). Across species, all traits varied significantly, but only stomatal length (SL) showed strong phylogenetic conservatism. Amax was positively correlated with Dvein and gs with and without phylogenetic corrections. SD correlated positively with Amax, Dvein and gs, with the correlation between SD and Dvein being significant after phylogenetic correction. Leaf water content showed significant correlations with LET, LT, and mesophyll thickness. Our results provide evidence that Amax of the studied ferns is linked to leaf water transport capacity, and there was an evolutionary association between water supply and demand in ferns. These findings add new insights into the evolutionary correlations among traits involving carbon and water economy in ferns.
蕨类植物的光合作用潜力通常比被子植物低。然而,蕨类植物的低光合作用潜力是否与叶片水分供应有关尚不清楚。我们假设,在蕨类植物中,叶片水分运输能力与光合作用和气孔密度之间存在进化关联。本研究在一个共同的花园中评估了 19 种陆生蕨类植物和 11 种附生蕨类植物的一系列与叶片解剖结构、水力学和生理学相关的功能特性,并通过比较系统发育学方法进行了分析。与附生蕨类植物相比,陆生蕨类植物具有更高的叶脉密度(Dvein)、气孔密度(SD)、气孔导度(gs)和光合能力(Amax),但表皮下厚度(LET)和叶片厚度(LT)较低。在物种间,所有特性均有显著差异,但只有气孔长度(SL)具有很强的系统发育保守性。Amax 与 Dvein 和 gs 呈正相关,无论是否进行系统发育校正。SD 与 Amax、Dvein 和 gs 呈正相关,在进行系统发育校正后,SD 与 Dvein 之间的相关性具有统计学意义。叶片含水量与 LET、LT 和叶肉厚度呈显著相关。我们的研究结果提供了证据,表明所研究的蕨类植物的 Amax 与叶片水分运输能力有关,并且蕨类植物的水分供应和需求之间存在进化关联。这些发现为涉及蕨类植物碳和水经济的特征之间的进化相关性提供了新的见解。