Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
Earth Observation Research Center, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba 305-8505, Japan.
Ann Bot. 2023 Apr 4;131(3):437-450. doi: 10.1093/aob/mcad025.
For a comprehensive understanding of the mechanisms of changing plant photosynthetic capacity during plant evolutionary history, knowledge of leaf gas exchange and optical properties are essential, both of which relate strongly to mesophyll anatomy. Although ferns are suitable for investigating the evolutionary history of photosynthetic capacity, comprehensive research of fern species has yet to be undertaken in this regard.
We investigated leaf optical properties, gas exchange and mesophyll anatomy of fern species with a wide range of divergence time, using 66 ferns from natural habitats and eight glasshouse-grown ferns. We used a spectroradiometer and an integrating sphere to measure light absorptance and reflectance by the leaves.
The more newly divergent fern species had a thicker mesophyll, a larger surface area of chloroplasts facing the intercellular airspaces (Sc), thicker cell walls and large light absorptance. Although no trend with divergence time was obtained in leaf photosynthetic capacity on a leaf-area basis, when the traits were expressed on a mesophyll-thickness basis, trends in leaf photosynthetic capacity became apparent. On a mesophyll-thickness basis, the more newly divergent species had a low maximum photosynthesis rate, accompanied by a low Sc.
We found a strong link between light capture, mesophyll anatomy and photosynthesis rate in fern species for the first time. The thick mesophyll of the more newly divergent ferns does not necessarily relate to the high photosynthetic capacity on a leaf-area basis. Rather, the thick mesophyll accompanied by thick cell walls allowed the ferns to adapt to a wider range of environments through increasing leaf toughness, which would contribute to the diversification of fern species.
为了全面了解植物进化历史中光合作用能力变化的机制,了解叶片气体交换和光学特性至关重要,这两者都与叶肉解剖结构密切相关。尽管蕨类植物适合研究光合作用能力的进化历史,但在这方面尚未对蕨类植物物种进行全面研究。
我们使用来自自然栖息地的 66 种蕨类植物和 8 种温室种植的蕨类植物,研究了具有广泛分歧时间的蕨类植物物种的叶片光学特性、气体交换和叶肉解剖结构。我们使用分光辐射计和积分球来测量叶片的光吸收率和反射率。
分歧时间较短的蕨类植物具有较厚的叶肉、较大的叶绿体面向细胞间隙的表面积(Sc)、较厚的细胞壁和较大的光吸收率。尽管在叶面积基础上,叶片光合作用能力没有随分歧时间的趋势,但当将这些特征表达在叶肉厚度基础上时,叶片光合作用能力的趋势变得明显。在叶肉厚度基础上,分歧时间较短的物种具有较低的最大光合作用速率,同时 Sc 也较低。
我们首次发现蕨类植物物种中的光捕获、叶肉解剖结构和光合作用速率之间存在很强的联系。分歧时间较短的蕨类植物较厚的叶肉不一定与叶面积基础上的高光合作用能力有关。相反,较厚的叶肉伴随着较厚的细胞壁,使蕨类植物能够通过增加叶片的韧性来适应更广泛的环境,这有助于蕨类植物物种的多样化。