Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Potsdam, Germany.
National Research Council, Montréal, Quebec, Canada.
PLoS One. 2014 Jan 8;9(1):e84761. doi: 10.1371/journal.pone.0084761. eCollection 2014.
Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic.
受永久冻土影响的土壤是最明显的生态系统之一,由于全球变暖,当前微生物对有机物质分解的控制正在发生变化。多边形冻土地带的气候变暖将导致季节性活跃层加深,引发微生物过程的变化,并可能在缺氧条件加剧下导致碳的降解加剧。为了确定富含碳、水饱和的永久冻土环境中的当前微生物组合,在加拿大西部北极地区的赫歇尔岛和育空海岸的四个多边形冻土地带地点进行了调查。细菌和古菌 16S rRNA 扩增子的 Ion Torrent 测序揭示了所有主要的微生物土壤群,并且表明随着深度的增加,多边形冻土地带土壤群落存在局部的垂直异质性。微生物多样性在表层最高,向永久冻土带方向逐渐减少。参与碳和氮循环的功能基因的定量 PCR 分析表明,表层具有很高的功能潜力,随着活跃层深度的增加而减少。我们观察到,驱动微生物多样性和功能潜力的土壤特性在每个研究地点都有所不同。这些结果突出了地貌可比地点的小规模异质性,极大地限制了对变暖北极地区受永久冻土影响的环境命运的概括。