Suppr超能文献

有26500年历史的解冻多年冻土中的微生物群落变化

Microbial Community Changes in 26,500-Year-Old Thawing Permafrost.

作者信息

Scheel Maria, Zervas Athanasios, Jacobsen Carsten S, Christensen Torben R

机构信息

Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark.

Department of Environmental Science, Aarhus University, Roskilde, Denmark.

出版信息

Front Microbiol. 2022 Mar 24;13:787146. doi: 10.3389/fmicb.2022.787146. eCollection 2022.

Abstract

Northern permafrost soils store more than half of the global soil carbon. Frozen for at least two consecutive years, but often for millennia, permafrost temperatures have increased drastically in the last decades. The resulting thermal erosion leads not only to gradual thaw, resulting in an increase of seasonally thawing soil thickness, but also to abrupt thaw events, such as sudden collapses of the soil surface. These could affect 20% of the permafrost zone and half of its organic carbon, increasing accessibility for deeper rooting vegetation and microbial decomposition into greenhouse gases. Knowledge gaps include the impact of permafrost thaw on the soil microfauna as well as key taxa to change the microbial mineralization of ancient permafrost carbon stocks during erosion. Here, we present the first sequencing study of an abrupt permafrost erosion microbiome in Northeast Greenland, where a thermal erosion gully collapsed in the summer of 2018, leading to the thawing of 26,500-year-old permafrost material. We investigated which soil parameters (pH, soil carbon content, age and moisture, organic and mineral horizons, and permafrost layers) most significantly drove changes of taxonomic diversity and the abundance of soil microorganisms in two consecutive years of intense erosion. Sequencing of the prokaryotic 16S rRNA and fungal ITS2 gene regions at finely scaled depth increments revealed decreasing alpha diversity with depth, soil age, and pH. The most significant drivers of variation were found in the soil age, horizons, and permafrost layer for prokaryotic and fungal beta diversity. Permafrost was mainly dominated by Proteobacteria and Firmicutes, with identified as the most abundant taxon. Thawed permafrost samples indicated increased abundance of several copiotrophic phyla, such as Bacteroidia, suggesting alterations of carbon utilization pathways within eroding permafrost.

摘要

北半球的永久冻土土壤储存了全球土壤碳的一半以上。永久冻土连续冻结至少两年,但通常长达数千年,在过去几十年中温度急剧上升。由此产生的热侵蚀不仅导致逐渐解冻,使季节性解冻土壤厚度增加,还导致突然解冻事件,如土壤表面突然坍塌。这些可能会影响20%的永久冻土区及其一半的有机碳,增加深层生根植被的可达性以及微生物将其分解为温室气体的可能性。知识空白包括永久冻土解冻对土壤小型动物区系的影响,以及在侵蚀过程中改变古代永久冻土碳储量微生物矿化的关键分类群。在这里,我们展示了对格陵兰东北部一次突然的永久冻土侵蚀微生物群落的首次测序研究,2018年夏天那里的一条热侵蚀沟壑坍塌,导致26500年历史的永久冻土物质解冻。我们调查了哪些土壤参数(pH值、土壤碳含量、年龄和湿度、有机层和矿质层以及永久冻土层)在连续两年的强烈侵蚀中最显著地推动了分类多样性的变化和土壤微生物的丰度。在精细尺度的深度增量下对原核生物16S rRNA和真菌ITS2基因区域进行测序,结果显示α多样性随深度、土壤年龄和pH值降低。对于原核生物和真菌的β多样性,发现土壤年龄、土层和永久冻土层是最显著的变异驱动因素。永久冻土主要由变形菌门和厚壁菌门主导,[具体分类群]被确定为最丰富的分类单元。解冻的永久冻土样本表明,一些富营养菌门的丰度增加,如拟杆菌纲,这表明侵蚀中的永久冻土内碳利用途径发生了改变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df44/8988141/eb70336a56aa/fmicb-13-787146-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验