Suppr超能文献

使用人类脑电图信号解码一只手上的单个手指运动。

Decoding individual finger movements from one hand using human EEG signals.

机构信息

School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma, United States of America.

Center for Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, United States of America.

出版信息

PLoS One. 2014 Jan 8;9(1):e85192. doi: 10.1371/journal.pone.0085192. eCollection 2014.

Abstract

Brain computer interface (BCI) is an assistive technology, which decodes neurophysiological signals generated by the human brain and translates them into control signals to control external devices, e.g., wheelchairs. One problem challenging noninvasive BCI technologies is the limited control dimensions from decoding movements of, mainly, large body parts, e.g., upper and lower limbs. It has been reported that complicated dexterous functions, i.e., finger movements, can be decoded in electrocorticography (ECoG) signals, while it remains unclear whether noninvasive electroencephalography (EEG) signals also have sufficient information to decode the same type of movements. Phenomena of broadband power increase and low-frequency-band power decrease were observed in EEG in the present study, when EEG power spectra were decomposed by a principal component analysis (PCA). These movement-related spectral structures and their changes caused by finger movements in EEG are consistent with observations in previous ECoG study, as well as the results from ECoG data in the present study. The average decoding accuracy of 77.11% over all subjects was obtained in classifying each pair of fingers from one hand using movement-related spectral changes as features to be decoded using a support vector machine (SVM) classifier. The average decoding accuracy in three epilepsy patients using ECoG data was 91.28% with the similarly obtained features and same classifier. Both decoding accuracies of EEG and ECoG are significantly higher than the empirical guessing level (51.26%) in all subjects (p<0.05). The present study suggests the similar movement-related spectral changes in EEG as in ECoG, and demonstrates the feasibility of discriminating finger movements from one hand using EEG. These findings are promising to facilitate the development of BCIs with rich control signals using noninvasive technologies.

摘要

脑机接口(BCI)是一种辅助技术,它可以解码人类大脑产生的神经生理信号,并将其转换为控制信号来控制外部设备,例如轮椅。挑战非侵入性 BCI 技术的一个问题是,从解码主要是大身体部位(如上下肢)运动的神经生理信号中获得的控制维度有限。据报道,在脑电(ECoG)信号中可以解码复杂的灵巧功能,即手指运动,而目前尚不清楚非侵入性脑电图(EEG)信号是否也具有足够的信息来解码相同类型的运动。本研究中,当通过主成分分析(PCA)对 EEG 功率谱进行分解时,观察到 EEG 中宽带功率增加和低频带功率降低的现象。这些与运动相关的频谱结构及其在 EEG 中手指运动引起的变化与之前 ECoG 研究中的观察结果以及本研究中的 ECoG 数据结果一致。使用运动相关的频谱变化作为特征,使用支持向量机(SVM)分类器对每个手指进行分类,从一只手的所有受试者中获得了 77.11%的平均解码准确率。使用同样获得的特征和相同的分类器,从 3 名癫痫患者的 ECoG 数据中获得的平均解码准确率为 91.28%。EEG 和 ECoG 的解码准确率均明显高于所有受试者的经验猜测水平(51.26%)(p<0.05)。本研究表明 EEG 中存在与 ECoG 相似的运动相关频谱变化,并证明了使用 EEG 从一只手区分手指运动的可行性。这些发现有望促进使用非侵入性技术开发具有丰富控制信号的 BCI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87d1/3885680/2ccd63f6c689/pone.0085192.g001.jpg

相似文献

1
Decoding individual finger movements from one hand using human EEG signals.
PLoS One. 2014 Jan 8;9(1):e85192. doi: 10.1371/journal.pone.0085192. eCollection 2014.
2
Evaluation of EEG features in decoding individual finger movements from one hand.
Comput Math Methods Med. 2013;2013:243257. doi: 10.1155/2013/243257. Epub 2013 Apr 24.
3
EEG-based BCI system for decoding finger movements within the same hand.
Neurosci Lett. 2019 Apr 17;698:113-120. doi: 10.1016/j.neulet.2018.12.045. Epub 2019 Jan 8.
4
Decoding micro-electrocorticographic signals by using explainable 3D convolutional neural network to predict finger movements.
J Neurosci Methods. 2024 Nov;411:110251. doi: 10.1016/j.jneumeth.2024.110251. Epub 2024 Aug 14.
5
Single trial discrimination of individual finger movements on one hand: a combined MEG and EEG study.
Neuroimage. 2012 Feb 15;59(4):3316-24. doi: 10.1016/j.neuroimage.2011.11.053. Epub 2011 Nov 30.
6
Classification of finger pairs from one hand based on spectral features in human EEG.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1263-6. doi: 10.1109/EMBC.2014.6943827.
7
Real-time control of a prosthetic hand using human electrocorticography signals.
J Neurosurg. 2011 Jun;114(6):1715-22. doi: 10.3171/2011.1.JNS101421. Epub 2011 Feb 11.
9
Decoding three-dimensional reaching movements using electrocorticographic signals in humans.
J Neural Eng. 2016 Apr;13(2):026021. doi: 10.1088/1741-2560/13/2/026021. Epub 2016 Feb 23.
10

引用本文的文献

1
Sequence action representations contextualize during early skill learning.
Elife. 2025 Sep 12;13:RP102475. doi: 10.7554/eLife.102475.
2
Gesture encoding in human left precentral gyrus neuronal ensembles.
Commun Biol. 2025 Aug 30;8(1):1315. doi: 10.1038/s42003-025-08557-z.
4
5
Correlates of implicit semantic processing as revealed by representational similarity analysis applied to EEG.
iScience. 2024 Oct 11;27(11):111149. doi: 10.1016/j.isci.2024.111149. eCollection 2024 Nov 15.
6
Electroencephalogram-Based Facial Gesture Recognition Using Self-Organizing Map.
Sensors (Basel). 2024 Apr 25;24(9):2741. doi: 10.3390/s24092741.
10
Improving single-hand open/close motor imagery classification by error-related potentials correction.
Heliyon. 2023 Jul 20;9(8):e18452. doi: 10.1016/j.heliyon.2023.e18452. eCollection 2023 Aug.

本文引用的文献

1
Decoding Finger Flexion from Band-Specific ECoG Signals in Humans.
Front Neurosci. 2012 Jun 28;6:91. doi: 10.3389/fnins.2012.00091. eCollection 2012.
2
Brain computer interfaces, a review.
Sensors (Basel). 2012;12(2):1211-79. doi: 10.3390/s120201211. Epub 2012 Jan 31.
3
Decoding Finger Movements from ECoG Signals Using Switching Linear Models.
Front Neurosci. 2012 Mar 6;6:29. doi: 10.3389/fnins.2012.00029. eCollection 2012.
4
Single-trial EEG discrimination between wrist and finger movement imagery and execution in a sensorimotor BCI.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6289-93. doi: 10.1109/IEMBS.2011.6091552.
5
Classification of multichannel ECoG related to individual finger movements with redundant spatial projections.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5424-7. doi: 10.1109/IEMBS.2011.6091341.
6
Single trial discrimination of individual finger movements on one hand: a combined MEG and EEG study.
Neuroimage. 2012 Feb 15;59(4):3316-24. doi: 10.1016/j.neuroimage.2011.11.053. Epub 2011 Nov 30.
7
Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface.
PLoS One. 2011;6(10):e26322. doi: 10.1371/journal.pone.0026322. Epub 2011 Oct 26.
8
Decoding natural grasp types from human ECoG.
Neuroimage. 2012 Jan 2;59(1):248-60. doi: 10.1016/j.neuroimage.2011.06.084. Epub 2011 Jul 8.
9
What would brain-computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis.
Amyotroph Lateral Scler. 2011 Sep;12(5):318-24. doi: 10.3109/17482968.2011.572978. Epub 2011 May 2.
10
Sparse cortical current density imaging in motor potentials induced by finger movement.
J Neural Eng. 2011 Jun;8(3):036008. doi: 10.1088/1741-2560/8/3/036008. Epub 2011 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验