Suppr超能文献

基于脑电图的连续解码技术对上肢从中心向外伸展任务的分类

Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques.

作者信息

Úbeda Andrés, Azorín José M, Chavarriaga Ricardo, R Millán José Del

机构信息

Brain-Machine Interface Systems Lab, Miguel Hernández University, Av. de la Universidad, S/N, Elche, 03202, Spain.

Defitech Chair in Brain-Machine Interface (CNBI), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, Geneva, CH-1202, Switzerland.

出版信息

J Neuroeng Rehabil. 2017 Feb 1;14(1):9. doi: 10.1186/s12984-017-0219-0.

Abstract

BACKGROUND

One of the current challenges in brain-machine interfacing is to characterize and decode upper limb kinematics from brain signals, e.g. to control a prosthetic device. Recent research work states that it is possible to do so based on low frequency EEG components. However, the validity of these results is still a matter of discussion. In this paper, we assess the feasibility of decoding upper limb kinematics from EEG signals in center-out reaching tasks during passive and active movements.

METHODS

The decoding of arm movement was performed using a multidimensional linear regression. Passive movements were analyzed using the same methodology to study the influence of proprioceptive sensory feedback in the decoding. Finally, we evaluated the possible advantages of classifying reaching targets, instead of continuous trajectories.

RESULTS

The results showed that arm movement decoding was significantly above chance levels. The results also indicated that EEG slow cortical potentials carry significant information to decode active center-out movements. The classification of reached targets allowed obtaining the same conclusions with a very high accuracy. Additionally, the low decoding performance obtained from passive movements suggests that discriminant modulations of low-frequency neural activity are mainly related to the execution of movement while proprioceptive feedback is not sufficient to decode upper limb kinematics.

CONCLUSIONS

This paper contributes to the assessment of feasibility of using linear regression methods to decode upper limb kinematics from EEG signals. From our findings, it can be concluded that low frequency bands concentrate most of the information extracted from upper limb kinematics decoding and that decoding performance of active movements is above chance levels and mainly related to the activation of cortical motor areas. We also show that the classification of reached targets from decoding approaches may be a more suitable real-time methodology than a direct decoding of hand position.

摘要

背景

脑机接口当前面临的挑战之一是从脑信号中表征和解码上肢运动学,例如控制假肢装置。最近的研究工作表明,基于低频脑电图成分可以做到这一点。然而,这些结果的有效性仍存在争议。在本文中,我们评估了在被动和主动运动的中心向外伸展任务中,从脑电图信号解码上肢运动学的可行性。

方法

使用多维线性回归进行手臂运动的解码。使用相同的方法分析被动运动,以研究本体感觉反馈在解码中的影响。最后,我们评估了对到达目标进行分类而非对连续轨迹进行分类的可能优势。

结果

结果表明,手臂运动解码显著高于随机水平。结果还表明,脑电图慢皮层电位携带了用于解码主动中心向外运动的重要信息。对到达目标的分类能够以非常高的准确率得出相同的结论。此外,从被动运动获得的低解码性能表明,低频神经活动的判别性调制主要与运动的执行有关,而本体感觉反馈不足以解码上肢运动学。

结论

本文有助于评估使用线性回归方法从脑电图信号解码上肢运动学的可行性。从我们的研究结果可以得出结论,低频带集中了从上肢运动学解码中提取的大部分信息,主动运动的解码性能高于随机水平,并且主要与皮层运动区的激活有关。我们还表明,与直接解码手部位置相比,从解码方法中对到达目标进行分类可能是一种更合适的实时方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b44f/5286813/0112481ee88f/12984_2017_219_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验