Department of Signal Theory, Communications and Telematics Engineering, University of Valladolid, Valladolid 47011, Spain.
Sensors (Basel). 2012;12(2):1211-79. doi: 10.3390/s120201211. Epub 2012 Jan 31.
A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or 'locked in' by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.
脑机接口(BCI)是一种硬件和软件通信系统,允许仅通过大脑活动来控制计算机或外部设备。BCI 研究的直接目标是为因神经肌肉疾病而完全瘫痪或“锁定”的严重残疾者提供通信能力,例如肌萎缩侧索硬化症、脑干中风或脊髓损伤。在这里,我们回顾了 BCI 的最新技术,研究了构成标准 BCI 的不同步骤:信号采集、预处理或信号增强、特征提取、分类和控制接口。我们讨论了它们的优点、缺点和最新进展,并调查了科学文献中报道的许多技术,以设计 BCI 的每个步骤。首先,综述检查了信号采集步骤中使用的神经影像学模式,每种模式都监测不同的功能大脑活动,例如电、磁或代谢活动。其次,综述讨论了确定用户意图的不同电生理控制信号,这些信号可以在大脑活动中检测到。第三,综述包括信号增强步骤中使用的一些技术,用于处理控制信号中的伪影并提高性能。第四,综述研究了特征提取和分类步骤中使用的一些数学算法,这些算法将控制信号中的信息转换为操作计算机或其他设备的命令。最后,综述提供了各种 BCI 应用的概述,这些应用可以控制各种设备。