Suppr超能文献

评估带有假肢膝关节的肌肉骨骼模型通过六个实验步态试验。

Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials.

机构信息

Musculoskeletal Biomechanics Research Laboratory, Department of Civil and Mechanical Engineering, University of Missouri - Kansas City, 5100 Rockhill Road, Kansas City, MO 64110-2499, United States.

Departments of Physical Therapy and Orthopaedic Surgery, University of Missouri, 801 Clark Hall, Columbia, MO 65211-4250, United States.

出版信息

Med Eng Phys. 2014 Mar;36(3):335-44. doi: 10.1016/j.medengphy.2013.12.007. Epub 2014 Jan 11.

Abstract

Knowledge of the forces acting on musculoskeletal joint tissues during movement benefits tissue engineering, artificial joint replacement, and our understanding of ligament and cartilage injury. Computational models can be used to predict these internal forces, but musculoskeletal models that simultaneously calculate muscle force and the resulting loading on joint structures are rare. This study used publicly available gait, skeletal geometry, and instrumented prosthetic knee loading data [1] to evaluate muscle driven forward dynamics simulations of walking. Inputs to the simulation were measured kinematics and outputs included muscle, ground reaction, ligament, and joint contact forces. A full body musculoskeletal model with subject specific lower extremity geometries was developed in the multibody framework. A compliant contact was defined between the prosthetic femoral component and tibia insert geometries. Ligament structures were modeled with a nonlinear force-strain relationship. The model included 45 muscles on the right lower leg. During forward dynamics simulations a feedback control scheme calculated muscle forces using the error signal between the current muscle lengths and the lengths recorded during inverse kinematics simulations. Predicted tibio-femoral contact force, ground reaction forces, and muscle forces were compared to experimental measurements for six different gait trials using three different gait types (normal, trunk sway, and medial thrust). The mean average deviation (MAD) and root mean square deviation (RMSD) over one gait cycle are reported. The muscle driven forward dynamics simulations were computationally efficient and consistently reproduced the inverse kinematics motion. The forward simulations also predicted total knee contact forces (166N<MAD<404N, 212N<RMSD<448N) and vertical ground reaction forces (66N<MAD<90N, 97N<RMSD<128N) well within 28% and 16% of experimental loads, respectively. However the simplified muscle length feedback control scheme did not realistically represent physiological motor control patterns during gait. Consequently, the simulations did not accurately predict medial/lateral tibio-femoral force distribution and muscle activation timing.

摘要

了解运动过程中作用于肌肉骨骼关节组织的力有益于组织工程、人工关节置换以及我们对韧带和软骨损伤的理解。计算模型可用于预测这些内力,但同时计算肌肉力和关节结构的相应载荷的肌肉骨骼模型却很少见。本研究使用了公开的步态、骨骼几何形状和仪器化假肢膝关节加载数据[1]来评估行走时肌肉驱动的正向动力学模拟。模拟的输入为测量的运动学,输出包括肌肉、地面反作用力、韧带和关节接触力。在多体框架中开发了具有受试者特定下肢几何形状的全身肌肉骨骼模型。定义了假肢股骨部件和胫骨插入件几何形状之间的弹性接触。使用非线性力-应变关系来模拟韧带结构。该模型包括右腿小腿的 45 块肌肉。在正向动力学模拟中,使用当前肌肉长度与逆运动学模拟中记录的长度之间的误差信号,通过反馈控制方案计算肌肉力。使用三种不同的步态类型(正常、躯干摆动和内侧推力)对六个不同的步态试验进行了比较,比较了预测的胫股接触力、地面反作用力和肌肉力与实验测量值的吻合情况。报告了一个步态周期的平均绝对偏差(MAD)和均方根偏差(RMSD)。肌肉驱动的正向动力学模拟计算效率高,始终如一地再现了逆运动学运动。正向模拟还很好地预测了总膝关节接触力(166N<MAD<404N,212N<RMSD<448N)和垂直地面反作用力(66N<MAD<90N,97N<RMSD<128N),分别在实验载荷的 28%和 16%以内。然而,简化的肌肉长度反馈控制方案并没有真实地代表步态中的生理运动控制模式。因此,模拟无法准确预测内侧/外侧胫股力分布和肌肉激活时间。

相似文献

1
Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials.
Med Eng Phys. 2014 Mar;36(3):335-44. doi: 10.1016/j.medengphy.2013.12.007. Epub 2014 Jan 11.
3
Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.
J Biomech Eng. 2014 Feb;136(2):021032. doi: 10.1115/1.4026359.
5
Co-simulation of neuromuscular dynamics and knee mechanics during human walking.
J Biomech Eng. 2014 Feb;136(2):021033. doi: 10.1115/1.4026358.
7
Musculoskeletal multibody dynamics simulation of the contact mechanics and kinematics of a natural knee joint during a walking cycle.
Proc Inst Mech Eng H. 2018 May;232(5):508-519. doi: 10.1177/0954411918767695. Epub 2018 Apr 11.
8
Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
J Biomech. 2013 Nov 15;46(16):2778-86. doi: 10.1016/j.jbiomech.2013.09.005. Epub 2013 Sep 12.
9
Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
Ann Biomed Eng. 2018 Aug;46(8):1216-1227. doi: 10.1007/s10439-018-2026-6. Epub 2018 Apr 18.
10
A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty.
J Biomech Eng. 2015 Feb 1;137(2):020904. doi: 10.1115/1.4029258. Epub 2015 Jan 26.

引用本文的文献

1
Estimation of the equivalent external force using a musculoskeletal model with muscle coactivation.
Med Biol Eng Comput. 2025 May 24. doi: 10.1007/s11517-025-03376-0.
2
A Muscle-Driven Spine Model for Predictive Simulations in the Design of Spinal Implants and Lumbar Orthoses.
Bioengineering (Basel). 2025 Mar 6;12(3):263. doi: 10.3390/bioengineering12030263.
5
Can a Musculoskeletal Model Adapted to Knee Implant Geometry Improve Prediction of 3D Contact Forces and Moments?
Ann Biomed Eng. 2023 Aug;51(8):1872-1883. doi: 10.1007/s10439-023-03216-y. Epub 2023 Apr 26.
6
[Musculoskeletal multibody dynamics investigation of posterior-stabilized total knee prosthesis].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Aug 25;39(4):651-659. doi: 10.7507/1001-5515.202203023.
7
Influences of load carriage and physical activity history on tibia bone strain.
J Sport Health Sci. 2019 Sep;8(5):478-485. doi: 10.1016/j.jshs.2016.08.012. Epub 2016 Nov 9.
8
Musculoskeletal Model Development of the Elbow Joint with an Experimental Evaluation.
Bioengineering (Basel). 2018 Apr 20;5(2):31. doi: 10.3390/bioengineering5020031.
10
Muscle Synergies Facilitate Computational Prediction of Subject-Specific Walking Motions.
Front Bioeng Biotechnol. 2016 Oct 13;4:77. doi: 10.3389/fbioe.2016.00077. eCollection 2016.

本文引用的文献

1
Are external knee load and EMG measures accurate indicators of internal knee contact forces during gait?
J Orthop Res. 2013 Jun;31(6):921-9. doi: 10.1002/jor.22304. Epub 2012 Dec 31.
2
Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses.
J Biomech. 2012 Aug 9;45(12):2149-56. doi: 10.1016/j.jbiomech.2012.05.040. Epub 2012 Jun 20.
3
Simulation of anterior cruciate ligament deficiency in a musculoskeletal model with anatomical knees.
Open Biomed Eng J. 2012;6:23-32. doi: 10.2174/1874230001206010023. Epub 2012 Mar 9.
4
Grand challenge competition to predict in vivo knee loads.
J Orthop Res. 2012 Apr;30(4):503-13. doi: 10.1002/jor.22023. Epub 2011 Dec 12.
5
A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics.
Comput Methods Biomech Biomed Engin. 2013;16(3):256-70. doi: 10.1080/10255842.2011.617004. Epub 2011 Oct 4.
7
Loading of the knee joint during activities of daily living measured in vivo in five subjects.
J Biomech. 2010 Aug 10;43(11):2164-73. doi: 10.1016/j.jbiomech.2010.03.046.
8
Numerical analysis of variations in posterior cruciate ligament properties and balancing techniques on total knee arthroplasty loading.
Med Eng Phys. 2010 Sep;32(7):700-7. doi: 10.1016/j.medengphy.2010.04.013. Epub 2010 May 6.
9
A subject specific multibody model of the knee with menisci.
Med Eng Phys. 2010 Jun;32(5):505-15. doi: 10.1016/j.medengphy.2010.02.020. Epub 2010 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验