Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
General Motors Global Research & Development Center, 30500 Mound Road, Warren MI 48090, USA.
Sci Rep. 2014 Jan 14;4:3684. doi: 10.1038/srep03684.
Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.
锂离子电池中使用的电极通常是多功能组件的复合材料。电极的性能由所有组件在介观尺度上的交互功能控制。对介观现象的基本理解为新材料的创新设计奠定了基础。在这里,我们报告了一种基于导电聚合物包裹的硅纳米粒子的锂离子电池电极的显著性能增强的实现和起源。与传统材料相比,这种新材料表现出快速的容量衰减。原位 TEM 揭示了导电聚合物-Si 复合材料增强的循环稳定性与 Si 纳米粒子和导电聚合物的介观协同功能有关。导电聚合物允许 Si 的体积变化可逆容纳,这使得在循环过程中所有颗粒之间保持良好的电接触。相比之下,传统 Si 电极的失效被探测到是电接触不足。