Suppr超能文献

p53 mRNA 5' 非翻译区长度变异及其对 p53 和其 N 端截断型异构体 ΔNp53 翻译起始效率的影响。

Length variants of the 5' untranslated region of p53 mRNA and their impact on the efficiency of translation initiation of p53 and its N-truncated isoform ΔNp53.

机构信息

Institute of Bioorganic Chemistry; Polish Academy of Sciences; Noskowskiego 12/14; Poznan, Poland.

出版信息

RNA Biol. 2013 Nov;10(11):1726-40. doi: 10.4161/rna.26562.

Abstract

Recently, we have determined the secondary structure of the 5'-terminal region of p53 mRNA that starts from the P1 transcription initiation site and includes two major translation initiation codons responsible for the synthesis of p53 and ΔNp53 isoform. Here, we showed that when this region was extended into 5' direction to the P0 transcription start site, the two characteristic hairpin motifs found in this region were preserved. Moreover, the presence of alternatively spliced intron 2 did not interfere with the formation of the larger hairpin in which the initiation codon for p53 was embedded. The impact of the different variants of p53 5'-terminal region, which start at P0 or P1 site and end with the initiation codon for p53 or ΔNp53, on the translation of luciferase reporter protein was compared. Strikingly, the efficiency of translation performed in rabbit reticulocyte lysate differed by two orders of magnitude. The toe-printing analysis was also applied to investigate the formation of the ribosomal complex on the model mRNA constructs. The relative translation efficiencies in HeLa and MCF-7 cells were similar to those observed in the cell lysate, although some differences were noted in comparison with cell-free conditions. The results were discussed in terms of the role of secondary structure folding of the 5'-terminal region of p53 mRNA in translation and possible modes of p53 and ΔNp53 translation initiation.

摘要

最近,我们已经确定了从 P1 转录起始位点开始并包括两个主要翻译起始密码子的 p53 mRNA5'-末端区域的二级结构,这两个起始密码子负责合成 p53 和 ΔNp53 同工型。在这里,我们表明,当这个区域向 P0 转录起始位点延伸 5'方向时,在这个区域中发现的两个特征发夹模体得以保留。此外,存在的可变剪接内含子 2 不干扰更大发夹的形成,该发夹嵌入了 p53 的起始密码子。比较了起始于 P0 或 P1 位点并以 p53 或 ΔNp53 的起始密码子结束的 p535'-末端区域的不同变体对荧光素酶报告蛋白翻译的影响。引人注目的是,在兔网织红细胞裂解物中的翻译效率差异达两个数量级。足迹分析也被应用于研究核糖体复合物在模型 mRNA 构建体上的形成。在 HeLa 和 MCF-7 细胞中的相对翻译效率与在细胞裂解物中观察到的相似,尽管与无细胞条件相比,注意到了一些差异。结果从 p53 mRNA5'-末端区域二级结构折叠在翻译中的作用以及 p53 和 ΔNp53 翻译起始的可能模式方面进行了讨论。

相似文献

2
Secondary structure and the role in translation initiation of the 5'-terminal region of p53 mRNA.
Biochemistry. 2011 Aug 23;50(33):7080-92. doi: 10.1021/bi200659b. Epub 2011 Aug 1.
3
Translational Control in Expression: The Role of 5'-Terminal Region of p53 mRNA.
Int J Mol Sci. 2019 Oct 29;20(21):5382. doi: 10.3390/ijms20215382.
9
Ribosomal binding to the internal ribosomal entry site of classical swine fever virus.
RNA. 2000 Dec;6(12):1791-807. doi: 10.1017/s1355838200000662.

引用本文的文献

1
40S ribosomal subunits scan mRNA for the start codon by one-dimensional diffusion.
bioRxiv. 2025 Jan 4:2024.12.30.630811. doi: 10.1101/2024.12.30.630811.
7
Regulation of the p53 expression profile by hnRNP K under stress conditions.
RNA Biol. 2020 Oct;17(10):1402-1415. doi: 10.1080/15476286.2020.1771944. Epub 2020 May 29.
8
Translational Control in Expression: The Role of 5'-Terminal Region of p53 mRNA.
Int J Mol Sci. 2019 Oct 29;20(21):5382. doi: 10.3390/ijms20215382.

本文引用的文献

1
Translation initiation in eukaryotes: versatility of the scanning model.
Biochemistry (Mosc). 2012 Dec;77(13):1465-77. doi: 10.1134/S0006297912130056.
2
Translation control in apoptosis.
Exp Oncol. 2012 Oct;34(3):218-30.
3
Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution.
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):E2424-32. doi: 10.1073/pnas.1207846109. Epub 2012 Aug 27.
4
The mechanism of eukaryotic translation initiation: new insights and challenges.
Cold Spring Harb Perspect Biol. 2012 Oct 1;4(10):a011544. doi: 10.1101/cshperspect.a011544.
5
Before It Gets Started: Regulating Translation at the 5' UTR.
Comp Funct Genomics. 2012;2012:475731. doi: 10.1155/2012/475731. Epub 2012 May 28.
6
A mechanistic overview of translation initiation in eukaryotes.
Nat Struct Mol Biol. 2012 Jun 5;19(6):568-76. doi: 10.1038/nsmb.2303.
7
Cap-dependent translation without base-by-base scanning of an messenger ribonucleic acid.
Nucleic Acids Res. 2012 Aug;40(15):7541-51. doi: 10.1093/nar/gks471. Epub 2012 May 25.
8
DBTSS: DataBase of Transcriptional Start Sites progress report in 2012.
Nucleic Acids Res. 2012 Jan;40(Database issue):D150-4. doi: 10.1093/nar/gkr1005. Epub 2011 Nov 15.
9
Tumor suppressor protein Pdcd4 inhibits translation of p53 mRNA.
J Biol Chem. 2011 Dec 16;286(50):42855-62. doi: 10.1074/jbc.M111.269456. Epub 2011 Oct 27.
10
Molecular mechanism of scanning and start codon selection in eukaryotes.
Microbiol Mol Biol Rev. 2011 Sep;75(3):434-67, first page of table of contents. doi: 10.1128/MMBR.00008-11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验