Frandsen Benjamin A, Yang Xiaohao, Billinge Simon J L
Department of Physics, Columbia University, New York, NY 10027, USA.
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA.
Acta Crystallogr A Found Adv. 2014 Jan;70(Pt 1):3-11. doi: 10.1107/S2053273313033081. Epub 2013 Dec 18.
The analytical form of the magnetic pair distribution function (mPDF) is derived for the first time by computing the Fourier transform of the neutron scattering cross section from an arbitrary collection of magnetic moments. Similar to the atomic pair distribution function applied to the study of atomic structure, the mPDF reveals both short-range and long-range magnetic correlations directly in real space. This function is experimentally accessible and yields magnetic correlations even when they are only short-range ordered. The mPDF is evaluated for various example cases to build an intuitive understanding of how different patterns of magnetic correlations will appear in the mPDF.
通过计算来自任意磁矩集合的中子散射截面的傅里叶变换,首次推导出了磁对分布函数(mPDF)的解析形式。与应用于原子结构研究的原子对分布函数类似,mPDF直接在实空间中揭示了短程和长程磁相关性。即使磁相关性仅为短程有序,该函数在实验上也可获取并能产生磁相关性。对各种示例情况评估了mPDF,以直观理解不同磁相关模式在mPDF中是如何呈现的。