Colorado School of Mines, Golden, CO, USA.
Phys Chem Chem Phys. 2014 Feb 28;16(8):3706-14. doi: 10.1039/c3cp54589j.
We show in this article that the position of semiconductor band edges relative to the water reduction and oxidation levels can be reliably predicted from the ionization potentials (IP) and electron affinities (AE) only. Using a set of 17 materials, including transition metal compounds, we show that accurate surface dependent IPs and EAs of semiconductors can be computed by combining density functional theory and many-body GW calculations. From the extensive comparison of calculated IPs and EAs with available experimental data, both from photoemission and electrochemical measurements, we show that it is possible to sort candidate materials solely from IPs and EAs thereby eliminating explicit treatment of semiconductor/water interfaces. We find that at pH values corresponding to the point of zero charge there is on average a 0.5 eV shift of IPs and EAs closer to the vacuum due to the dipoles formed at material/water interfaces.
本文表明,半导体能带边缘相对于水还原和氧化水平的位置仅可以通过电离能(IP)和电子亲和能(AE)可靠地预测。使用包括过渡金属化合物在内的 17 种材料,我们表明可以通过组合密度泛函理论和多体 GW 计算来计算准确的半导体表面相关的 IP 和 EA。通过与光电发射和电化学测量等现有实验数据的广泛比较,我们表明仅从 IP 和 EA 就可以对候选材料进行分类,从而无需对半导体/水界面进行显式处理。我们发现,在对应于零电荷点的 pH 值下,由于在材料/水界面形成的偶极子,IP 和 EA 平均向真空方向移动 0.5eV。