Peterson E A, Debela T T, Gomoro G M, Neaton J B, Asres G A
Department of Physics, University of California Berkeley Berkeley CA 94720 USA.
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA.
RSC Adv. 2022 Nov 1;12(48):31303-31316. doi: 10.1039/d2ra05533c. eCollection 2022 Oct 27.
The electronic structure of semiconducting 2D materials such as monolayer transition metal dichalcogenides (TMDs) are known to be tunable environment and external fields, and van der Waals (vdW) heterostructures consisting of stacks of distinct types of 2D materials offer the possibility to further tune and optimize the electronic properties of 2D materials. In this work, we use density functional theory (DFT) calculations to calculate the structure and electronic properties of a vdW heterostructure of Janus monolayer WSSe with monolayer ZnO, both of which possess out of plane dipole moments. The effects of alignment, biaxial and uniaxial strain, orientation, and electric field on dipole moments and band edge energies of this heterostructure are calculated and examined. We find that the out of plane dipole moment of the ZnO monolayer is highly sensitive to strain, leading to the broad tunability of the heterostructure band edge energies over a range of experimentally-relevant strains. The use of strain-tunable 2D materials to control band offsets and alignment is a general strategy applicable to other vdW heterostructures, one that may be advantageous in the context of clean energy applications, including photocatalytic applications, and beyond.
诸如单层过渡金属二硫属化物(TMDs)之类的二维半导体材料的电子结构已知可通过环境和外部场进行调节,并且由不同类型的二维材料堆叠而成的范德华(vdW)异质结构提供了进一步调节和优化二维材料电子特性的可能性。在这项工作中,我们使用密度泛函理论(DFT)计算来计算具有单层ZnO的Janus单层WSSe的vdW异质结构的结构和电子特性,这两种材料都具有面外偶极矩。计算并研究了取向、双轴和单轴应变、方向以及电场对该异质结构的偶极矩和带边能量的影响。我们发现ZnO单层的面外偶极矩对应变高度敏感,从而导致在一系列与实验相关的应变范围内异质结构带边能量具有广泛的可调性。使用应变可调的二维材料来控制带隙和排列是一种适用于其他vdW异质结构的通用策略,这在包括光催化应用等清洁能源应用及其他领域中可能具有优势。