Dph3 是真核生物二氢尿嘧啶生物合成第一步中 Dph1-Dph2 的电子供体。
Dph3 is an electron donor for Dph1-Dph2 in the first step of eukaryotic diphthamide biosynthesis.
机构信息
Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States.
出版信息
J Am Chem Soc. 2014 Feb 5;136(5):1754-7. doi: 10.1021/ja4118957. Epub 2014 Jan 22.
Diphthamide, the target of diphtheria toxin, is a unique posttranslational modification on translation elongation factor 2 (EF2) in archaea and eukaryotes. The biosynthesis of diphthamide was proposed to involve three steps. The first step is the transfer of the 3-amino-3-carboxypropyl group from S-adenosyl-l-methionine (SAM) to the histidine residue of EF2, forming a C-C bond. Previous genetic studies showed this step requires four proteins in eukaryotes, Dph1-Dph4. However, the exact molecular functions for the four proteins are unknown. Previous study showed that Pyrococcus horikoshii Dph2 (PhDph2), a novel iron-sulfur cluster-containing enzyme, forms a homodimer and is sufficient for the first step of diphthamide biosynthesis in vitro. Here we demonstrate by in vitro reconstitution that yeast Dph1 and Dph2 form a complex (Dph1-Dph2) that is equivalent to the homodimer of PhDph2 and is sufficient to catalyze the first step in vitro in the presence of dithionite as the reductant. We further demonstrate that yeast Dph3 (also known as KTI11), a CSL-type zinc finger protein, can bind iron and in the reduced state can serve as an electron donor to reduce the Fe-S cluster in Dph1-Dph2. Our study thus firmly establishes the functions for three of the proteins involved in eukaryotic diphthamide biosynthesis. For most radical SAM enzymes in bacteria, flavodoxins and flavodoxin reductases are believed to serve as electron donors for the Fe-S clusters. The finding that Dph3 is an electron donor for the Fe-S clusters in Dph1-Dph2 is thus interesting and opens up new avenues of research on electron transfer to Fe-S proteins in eukaryotic cells.
二氢假尿嘧啶,白喉毒素的靶标,是古菌和真核生物翻译延伸因子 2(EF2)上独特的翻译后修饰。二氢假尿嘧啶的生物合成被认为涉及三个步骤。第一步是将 S-腺苷-L-甲硫氨酸(SAM)的 3-氨基-3-羧基丙基转移到 EF2 的组氨酸残基上,形成 C-C 键。先前的遗传研究表明,这一步需要真核生物中的四种蛋白质,Dph1-Dph4。然而,这四种蛋白质的确切分子功能尚不清楚。先前的研究表明,Pyrococcus horikoshii Dph2(PhDph2),一种新型含铁硫簇的酶,形成同源二聚体,足以在体外进行二氢假尿嘧啶生物合成的第一步。在这里,我们通过体外重组证明,酵母 Dph1 和 Dph2 形成一个复合物(Dph1-Dph2),与 PhDph2 的同源二聚体等效,并且在二硫代硫酸盐作为还原剂的存在下足以在体外催化第一步。我们进一步证明,酵母 Dph3(也称为 KTI11),一种 CSL 型锌指蛋白,可以结合铁,并且在还原状态下可以作为电子供体将 Dph1-Dph2 中的 Fe-S 簇还原。因此,我们的研究明确了真核生物二氢假尿嘧啶生物合成中涉及的三种蛋白质的功能。对于大多数细菌中的自由基 SAM 酶,黄素蛋白和黄素蛋白还原酶被认为是 Fe-S 簇的电子供体。Dph3 是 Dph1-Dph2 中 Fe-S 簇的电子供体的发现很有趣,并为真核细胞中 Fe-S 蛋白的电子转移开辟了新的研究途径。
相似文献
J Biol Inorg Chem. 2019-8-28
Methods Enzymol. 2018
Biochemistry. 2010-11-9
引用本文的文献
ACS Omega. 2024-8-28
本文引用的文献
Toxins (Basel). 2013-5-3
Proc Natl Acad Sci U S A. 2012-11-19
Proc Natl Acad Sci U S A. 2012-8-6
J Am Chem Soc. 2011-12-21