Suppr超能文献

纳米级等离子体器件的直接温度测绘。

Direct temperature mapping of nanoscale plasmonic devices.

机构信息

Department of Applied Physics, The Benin School of Engineering and Computer Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel.

出版信息

Nano Lett. 2014 Feb 12;14(2):648-52. doi: 10.1021/nl403872d. Epub 2014 Jan 15.

Abstract

Side by side with the great advantages of plasmonics in nanoscale light confinement, the inevitable ohmic loss results in significant joule heating in plasmonic devices. Therefore, understanding optical-induced heat generation and heat transport in integrated on-chip plasmonic devices is of major importance. Specifically, there is a need for in situ visualization of electromagnetic induced thermal energy distribution with high spatial resolution. This paper studies the heat distribution in silicon plasmonic nanotips. Light is coupled to the plasmonic nanotips from a silicon nanowaveguide that is integrated with the tip on chip. Heat is generated by light absorption in the metal surrounding the silicon nanotip. The steady-state thermal distribution is studied numerically and measured experimentally using the approach of scanning thermal microscopy. It is shown that following the nanoscale heat generation by a 10 mW light source within a silicon photonic waveguide the temperature in the region of the nanotip is increased by ∼ 15 °C compared with the ambient temperature. Furthermore, we also perform a numerical study of the dynamics of the heat transport. Given the nanoscale dimensions of the structure, significant heating is expected to occur within the time frame of picoseconds. The capability of measuring temperature distribution of plasmonic structures at the nanoscale is shown to be a powerful tool and may be used in future applications related to thermal plasmonic applications such as control heating of liquids, thermal photovoltaic, nanochemistry, medicine, heat-assisted magnetic memories, and nanolithography.

摘要

与等离子体在纳米尺度光限制方面的巨大优势并存的是,不可避免的欧姆损耗会导致等离子体器件中产生显著的焦耳热。因此,理解集成在片上的等离子体器件中的光致热产生和热输运是非常重要的。具体来说,需要具有高空间分辨率的对电磁感应热能分布进行原位可视化的能力。本文研究了硅等离子体纳米尖端中的热分布。光从与尖端集成在芯片上的硅纳米波导耦合到等离子体纳米尖端。金属环绕硅纳米尖端的光吸收产生热量。通过扫描热显微镜方法进行数值研究和实验测量稳态热分布。结果表明,在硅光子波导中的 10mW 光源的纳米尺度热产生之后,与环境温度相比,纳米尖端区域的温度升高了约 15°C。此外,我们还对热输运的动力学进行了数值研究。鉴于结构的纳米尺度,预计在皮秒时间范围内会发生显著的加热。表明在纳米尺度上测量等离子体结构的温度分布的能力是一种强大的工具,并可能用于与热等离子体应用相关的未来应用,例如控制液体加热、热光伏、纳米化学、医学、磁辅助记忆和纳米光刻。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验