Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
ACS Nano. 2022 Apr 26;16(4):6233-6243. doi: 10.1021/acsnano.2c00035. Epub 2022 Mar 28.
The temperature of nanoparticles is a critical parameter in applications that range from biology, to sensors, to photocatalysis. Yet, accurately determining the absolute temperature of nanoparticles is intrinsically difficult because traditional temperature probes likely deliver inaccurate results due to their large thermal mass compared to the nanoparticles. Here we present a hydrogen nanothermometry method that enables a noninvasive and direct measurement of absolute Pd nanoparticle temperature the temperature dependence of the first-order phase transformation during Pd hydride formation. We apply it to accurately measure light-absorption-induced Pd nanoparticle heating at different irradiated powers with 1 °C resolution and to unravel the impact of nanoparticle density in an array on the obtained temperature. In a wider perspective, this work reports a noninvasive method for accurate temperature measurements at the nanoscale, which we predict will find application in, for example, nano-optics, nanolithography, and plasmon-mediated catalysis to distinguish thermal from electronic effects.
纳米粒子的温度是一个关键参数,应用范围从生物学、传感器到光催化。然而,由于与纳米粒子相比,传统的温度探头具有较大的热质量,因此准确确定纳米粒子的绝对温度本质上是困难的。在这里,我们提出了一种氢纳米温度计方法,该方法能够实现对 Pd 纳米粒子温度的非侵入式和直接测量,即 Pd 氢化物形成过程中一阶相变的温度依赖性。我们将其应用于以 1°C 的分辨率准确测量不同辐照功率下光吸收诱导的 Pd 纳米粒子加热,并揭示了在纳米粒子阵列中纳米粒子密度对获得温度的影响。更广泛地说,这项工作报道了一种在纳米尺度上进行准确温度测量的非侵入式方法,我们预计该方法将在纳米光学、纳米光刻和等离子体介导的催化等领域得到应用,以区分热效应和电子效应。