Beijing National Laboratory for Molecular Sciences, the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China.
J Am Chem Soc. 2014 Feb 5;136(5):2135-41. doi: 10.1021/ja412533d. Epub 2014 Jan 23.
The charge carrier mobility of p-type and ambipolar polymer field-effect transistors (FETs) has been improved substantially. Nonetheless, high-mobility n-type polymers are rare, and few can be operated under ambient conditions. This situation is mainly caused by the scarcity of strong electron-deficient building blocks. Herein, we present two novel electron-deficient building blocks, FBDOPV-1 and FBDOPV-2, with low LUMO levels down to -4.38 eV. On the basis of both building blocks, we develop two poly(p-phenylene vinylene) derivatives (PPVs), FBDPPV-1 and FBDPPV-2, for high-performance n-type polymer FETs. The introduction of the fluorine atoms effectively lowers the LUMO levels of both polymers, leading to LUMO levels as low as -4.30 eV. Fluorination endows both polymers with not only lower LUMO levels, but also more ordered thin-film packing, smaller π-π stacking distance, stronger interchain interaction and locked conformation of polymer backbones. All these factors provide FBDPPV-1 with high electron mobilities up to 1.70 cm(2) V(-1) s(-1) and good stability under ambient conditions. Furthermore, when polymers have different fluorination positions, their backbone conformations in solid state differ, eventually leading to different device performance.
已大幅提高了 p 型和双极性聚合物场效应晶体管(FET)的电荷载流子迁移率。然而,高迁移率的 n 型聚合物却很稀缺,并且很少有能在环境条件下工作的。这种情况主要是由于缺乏强缺电子构建块造成的。在此,我们提出了两个新型缺电子构建块 FBDOPV-1 和 FBDOPV-2,其最低未占据分子轨道(LUMO)能级低至-4.38 eV。基于这两个构建块,我们开发了两种聚(对苯撑乙烯)衍生物(PPVs),FBDPPV-1 和 FBDPPV-2,用于高性能 n 型聚合物 FET。氟原子的引入有效地降低了两种聚合物的 LUMO 能级,使其 LUMO 能级低至-4.30 eV。氟化不仅赋予了两种聚合物更低的 LUMO 能级,还赋予了它们更有序的薄膜堆积、更小的π-π堆积距离、更强的分子间相互作用和聚合物主链的锁定构象。所有这些因素使得 FBDPPV-1 具有高达 1.70 cm(2) V(-1) s(-1)的高电子迁移率和在环境条件下的良好稳定性。此外,当聚合物具有不同的氟化位置时,其在固态中的主链构象会有所不同,最终导致器件性能不同。