Suppr超能文献

更正:真菌基因组的比较分析揭示了真菌中不同的植物细胞壁降解能力。

Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.

作者信息

Zhao Zhongtao, Liu Huiquan, Wang Chenfang, Xu Jin-Rong

机构信息

NWAFU-PU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.

出版信息

BMC Genomics. 2014 Jan 3;15:6. doi: 10.1186/1471-2164-15-6.

Abstract

UNLABELLED

The version of this article published in BMC Genomics 2013, 14: 274, contains 9 unpublished genomes (Botryobasidium botryosum, Gymnopus luxurians, Hypholoma sublateritium, Jaapia argillacea, Hebeloma cylindrosporum, Conidiobolus coronatus, Laccaria amethystina, Paxillus involutus, and P. rubicundulus) downloaded from JGI website. In this correction, we removed these genomes after discussion with editors and data producers whom we should have contacted before downloading these genomes. Removing these data did not alter the principle results and conclusions of our original work. The relevant Figures 1, 2, 3, 4 and 6; and Table 1 have been revised. Additional files 1, 3, 4, and 5 were also revised. We would like to apologize for any confusion or inconvenience this may have caused.

BACKGROUND

Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported.

RESULTS

In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 94 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex history of lineage-specific expansions and attritions for the PL1 family.

CONCLUSIONS

Our study provides insights into the variety and expansion of fungal CAZyme classes and revealed the relationship of CAZyme size and diversity with their nutritional strategy and host specificity.

摘要

未标注

本文发表于《BMC基因组学》2013年第14卷第274期,其中包含从联合基因组研究所(JGI)网站下载的9个未发表的基因组(葡萄状葡萄孢、繁茂裸盖菇、亚侧耳、泥生亚脐菇、柱状环柄菇、冠状耳霉、紫晶蜡蘑、卷边桩菇和微红桩菇)。在此次勘误中,经与编辑及数据提供者商议(在下载这些基因组之前我们就应该联系他们),我们移除了这些基因组。移除这些数据并未改变我们原研究的主要结果和结论。相关的图1、2、3、4和6以及表1已作修订。附加文件1、3、4和5也已修订。对于由此可能造成的任何混淆或不便,我们深表歉意。

背景

真菌产生多种碳水化合物活性酶(CAZyme)用于降解植物多糖物质,以促进感染和/或获取营养。鉴定和比较具有不同营养模式或感染机制的真菌的CAZyme,可能为更好地理解它们的生活方式和感染模式提供信息。迄今为止,已有数百个真菌基因组公开可用。然而,尚未有关于整个真菌界真菌CAZyme的系统比较分析报道。

结果

在本研究中,我们系统地鉴定了子囊菌门、担子菌门、壶菌门和接合菌门94种代表性真菌的预测蛋白质组中的糖苷水解酶(GH)、多糖裂解酶(PL)、碳水化合物酯酶(CE)、糖基转移酶(GT)以及碳水化合物结合模块(CBM)。对这些在植物多糖降解中起主要作用的CAZyme的比较分析表明,真菌在CAZyme的数量和种类上表现出极大的多样性。其中,一些GH和CE家族是分布在所有分析真菌中的最普遍的CAZyme。重要的是,一些GH家族的纤维素酶存在于已知没有纤维素降解能力的真菌中。此外,我们的结果还表明,一般来说,植物病原真菌的CAZyme数量最多。活体营养型真菌的CAZyme往往比死体营养型和半活体营养型真菌少。双子叶植物病原体通常比感染单子叶植物的真菌含有更多的果胶酶。有趣的是,除了酵母之外,许多在降解植物生物质方面高度活跃的腐生真菌的CAZyme比植物病原真菌少。此外,对小麦赤霉病菌禾谷镰刀菌基因表达谱的分析表明,大多数与细胞壁降解相关的CAZyme基因在植物感染期间上调。系统发育分析还揭示了PL1家族特定谱系扩张和损耗的复杂历史。

结论

我们的研究深入了解了真菌CAZyme类别的多样性和扩张情况,并揭示了CAZyme大小和多样性与其营养策略和宿主特异性之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5ef/3893384/df43f9a10297/1471-2164-15-6-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验