Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan; Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan.
Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan.
J Biosci Bioeng. 2021 Jun;131(6):622-630. doi: 10.1016/j.jbiosc.2021.01.008. Epub 2021 Mar 4.
Traditionally, filamentous fungi and actinomycetes are well-known cellulolytic microorganisms that have been utilized in the commercial production of cellulase enzyme cocktails for industrial-scale degradation of plant biomass. Noticeably, the Ktedonobacteria lineage (phylum Chloroflexi) with actinomycetes-like morphology was identified and exhibited diverse carbohydrate utilization or degradation abilities. In this study, we performed genome-wide profiling of carbohydrate-active enzymes (CAZymes) in the filamentous Ktedonobacteria lineage. Numerous CAZymes (153-290 CAZymes, representing 63-131 glycoside hydrolases (GHs) per genome), including complex mixtures of endo- and exo-cellulases, were predicted in 15 available Ktedonobacteria genomes. Of note, 4-28 CAZymes were predicted to be extracellular enzymes, whereas 3-29 CAZymes were appended with carbohydrate-binding modules (CBMs) that may promote their binding to insoluble carbohydrate substrates. This number far exceeded other Chloroflexi lineages and were comparable to the cellulolytic actinomycetes. Six multi-modular extracellular GHs were cloned from the thermophilic Thermosporothrix hazakensis SK20-1 strain and heterologously expressed. The putative endo-glucanases of ThazG5-1, ThazG9, and ThazG12 exhibited strong cellulolytic activity, whereas the putative exo-glucanases ThazG6 and ThazG48 formed weak but observable halos on carboxymethyl cellulose plates, indicating their potential biotechnological application. The purified recombinant ThazG12 had near-neutral pH (optimal 6.0), high thermostability (60°C), and broad specificity against soluble and insoluble polysaccharide substrates. It also represented described a novel thermostable bacterial β-1,4-glucanase in the GH12 family. Together, this research revealed the underestimated cellulolytic potential of the Ktedonobacteria lineage and highlighted its potential biotechnological utility as a promising microbial resource for the discovery of industrially useful cellulases.
传统上,丝状真菌和放线菌是众所周知的纤维素分解微生物,已被用于商业生产纤维素酶酶混合物,以在工业规模上降解植物生物质。值得注意的是,放线菌样形态的 Ktedonobacteria 谱系(绿弯菌门)被鉴定出来,并表现出多样化的碳水化合物利用或降解能力。在这项研究中,我们对丝状 Ktedonobacteria 谱系中的碳水化合物活性酶(CAZymes)进行了全基因组分析。在 15 个可用的 Ktedonobacteria 基因组中预测了大量的 CAZymes(153-290 个 CAZymes,每个基因组代表 63-131 个糖苷水解酶(GHs)),包括内切和外切纤维素酶的复杂混合物。值得注意的是,预测有 4-28 个 CAZymes 是细胞外酶,而 3-29 个 CAZymes 则附有碳水化合物结合模块(CBMs),这可能促进它们与不溶性碳水化合物底物的结合。这个数字远远超过其他绿弯菌谱系,与纤维素分解放线菌相当。从嗜热 Thermosporothrix hazakensis SK20-1 菌株中克隆了 6 种多模块细胞外 GHs,并进行了异源表达。推测的内切葡聚糖酶 ThazG5-1、ThazG9 和 ThazG12 表现出很强的纤维素酶活性,而推测的外切葡聚糖酶 ThazG6 和 ThazG48 在羧甲基纤维素平板上形成微弱但可观察到的晕环,表明它们具有潜在的生物技术应用。纯化的重组 ThazG12 具有近中性 pH(最佳 6.0)、高热稳定性(60°C)和对可溶性和不溶性多糖底物的广泛特异性。它还代表了 GH12 家族中描述的一种新型耐热细菌 β-1,4-葡聚糖酶。总的来说,这项研究揭示了 Ktedonobacteria 谱系被低估的纤维素分解潜力,并强调了其作为有前途的微生物资源的生物技术应用潜力,可用于发现工业上有用的纤维素酶。