College of Information Technology, Shanghai Ocean University, Shanghai, 201306 China.
Institute of Systems Biology, Shanghai University, Shanghai, 200444 China.
Cogn Neurodyn. 2013 Feb;7(1):59-65. doi: 10.1007/s11571-012-9218-9. Epub 2012 Sep 21.
In mammals, circadian rhythms are controlled by the neurons located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Each neuron in the SCN contains an autonomous molecular clock. The fundamental question is how the individual cellular oscillators, expressing a wide range of periods, interact and assemble to achieve phase synchronization. Most of the studies carried out so far emphasize the crucial role of the periodicity imposed by the light-dark cycle in neuronal synchronization. However, in natural conditions, the interaction between the SCN neurons is non-negligible and coupling between cells in the SCN is achieved partly by neurotransmitters. In this paper, we use a model of nonidentical, globally coupled cellular clocks considered as Goodwin oscillators. We mainly study the synchronization induced by coupling from an analytical way. Our results show that the role of the coupling is to enhance the synchronization to the external forcing. The conclusion of this paper can help us better understand the mechanism of circadian rhythm.
在哺乳动物中,昼夜节律由位于下丘脑视交叉上核(SCN)的神经元控制。SCN 中的每个神经元都包含一个自主的分子钟。基本问题是如何实现表达广泛周期的单个细胞振荡器的相互作用和组装,以实现相位同步。到目前为止,大多数研究都强调了光暗周期施加的周期性在神经元同步中的关键作用。然而,在自然条件下,SCN 神经元之间的相互作用不可忽视,SCN 中的细胞之间的耦合部分是通过神经递质实现的。在本文中,我们使用了一个被视为 Goodwin 振荡器的非同质、全局耦合细胞钟模型。我们主要从分析的角度研究耦合引起的同步。我们的结果表明,耦合的作用是增强对外界激励的同步。本文的结论可以帮助我们更好地理解昼夜节律的机制。