Department of Computer Science, University of Otago, 90 Union Place East, Dunedin, 9016, New Zealand,
Cogn Neurodyn. 2008 Dec;2(4):319-34. doi: 10.1007/s11571-008-9061-1. Epub 2008 Sep 16.
The paper introduces a novel computational approach to brain dynamics modeling that integrates dynamic gene-protein regulatory networks with a neural network model. Interaction of genes and proteins in neurons affects the dynamics of the whole neural network. Through tuning the gene-protein interaction network and the initial gene/protein expression values, different states of the neural network dynamics can be achieved. A generic computational neurogenetic model is introduced that implements this approach. It is illustrated by means of a simple neurogenetic model of a spiking neural network of the generation of local field potential. Our approach allows for investigation of how deleted or mutated genes can alter the dynamics of a model neural network. We conclude with the proposal how to extend this approach to model cognitive neurodynamics.
本文提出了一种新的计算方法来模拟大脑动力学,该方法将动态基因-蛋白质调控网络与神经网络模型相结合。神经元中基因和蛋白质的相互作用会影响整个神经网络的动力学。通过调整基因-蛋白质相互作用网络和初始基因/蛋白质表达值,可以实现神经网络动力学的不同状态。本文引入了一种通用的计算神经遗传模型来实现这种方法。通过一个简单的神经遗传模型来生成局部场电位的脉冲神经网络来说明该方法。我们的方法允许研究删除或突变基因如何改变模型神经网络的动力学。最后提出了如何将这种方法扩展到模型认知神经动力学的建议。