Suppr超能文献

具有多个时滞的两个神经网络系统中的稳定性开关和双 Hopf 分岔。

Stability switches and double Hopf bifurcation in a two-neural network system with multiple delays.

机构信息

School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092 China ; College of Information Technology, Shanghai Ocean University, Shanghai, 201306 China.

School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092 China.

出版信息

Cogn Neurodyn. 2013 Dec;7(6):505-21. doi: 10.1007/s11571-013-9254-0. Epub 2013 Apr 16.

Abstract

Time delay is an inevitable factor in neural networks due to the finite propagation velocity and switching speed. Neural system may lose its stability even for very small delay. In this paper, a two-neural network system with the different types of delays involved in self- and neighbor- connection has been investigated. The local asymptotic stability of the equilibrium point is studied by analyzing the corresponding characteristic equation. It is found that the multiple delays can lead the system dynamic behavior to exhibit stability switches. The delay-dependent stability regions are illustrated in the delay-parameter plane, followed which the double Hopf bifurcation points can be obtained from the intersection points of the first and second Hopf bifurcation, i.e., the corresponding characteristic equation has two pairs of imaginary eigenvalues. Taking the delays as the bifurcation parameters, the classification and bifurcation sets are obtained in terms of the central manifold reduction and normal form method. The dynamical behavior of system may exhibit the quasi-periodic solutions due to the Neimark- Sacker bifurcation. Finally, numerical simulations are made to verify the theoretical results.

摘要

由于有限的传播速度和开关速度,时滞是神经网络中不可避免的因素。即使是非常小的延迟,神经系统也可能失去稳定性。本文研究了一种具有自连接和邻接两种延迟的双神经网络系统。通过分析相应的特征方程,研究了平衡点的局部渐近稳定性。结果表明,多个时滞会导致系统动态行为表现出稳定性切换。在时滞参数平面上说明了时滞相关稳定性区域,然后可以从第一和第二 Hopf 分岔的交点获得双 Hopf 分岔点,即相应的特征方程具有两对虚特征值。以时滞作为分岔参数,利用中心流形约化和规范型方法得到了分类和分岔集。由于 Neimark-Sacker 分岔,系统的动态行为可能表现出拟周期解。最后,进行了数值模拟以验证理论结果。

相似文献

1
Stability switches and double Hopf bifurcation in a two-neural network system with multiple delays.
Cogn Neurodyn. 2013 Dec;7(6):505-21. doi: 10.1007/s11571-013-9254-0. Epub 2013 Apr 16.
2
Bifurcation structure of two coupled FHN neurons with delay.
Math Biosci. 2015 Dec;270(Pt A):41-56. doi: 10.1016/j.mbs.2015.09.008. Epub 2015 Oct 20.
3
Multiple bifurcations and coexistence in an inertial two-neuron system with multiple delays.
Cogn Neurodyn. 2020 Jun;14(3):359-374. doi: 10.1007/s11571-020-09575-9. Epub 2020 Mar 6.
4
Stability switches and multistability coexistence in a delay-coupled neural oscillators system.
J Theor Biol. 2012 Nov 21;313:98-114. doi: 10.1016/j.jtbi.2012.08.011. Epub 2012 Aug 18.
8
Stability and Hopf bifurcation of a general delayed recurrent neural network.
IEEE Trans Neural Netw. 2008 May;19(5):845-54. doi: 10.1109/TNN.2007.912589.

引用本文的文献

1
Hamiltonian energy in a modified Hindmarsh-Rose model.
Front Netw Physiol. 2024 Mar 26;4:1362778. doi: 10.3389/fnetp.2024.1362778. eCollection 2024.
2
High codimensional bifurcation analysis to a six-neuron BAM neural network.
Cogn Neurodyn. 2016 Apr;10(2):149-64. doi: 10.1007/s11571-015-9364-y. Epub 2015 Nov 14.

本文引用的文献

1
Dynamics of period-doubling bifurcation to chaos in the spontaneous neural firing patterns.
Cogn Neurodyn. 2012 Feb;6(1):89-106. doi: 10.1007/s11571-011-9184-7. Epub 2011 Dec 7.
2
Stability switches and multistability coexistence in a delay-coupled neural oscillators system.
J Theor Biol. 2012 Nov 21;313:98-114. doi: 10.1016/j.jtbi.2012.08.011. Epub 2012 Aug 18.
4
Mathematical model of the dynamics of psychotherapy.
Cogn Neurodyn. 2011 Sep;5(3):265-75. doi: 10.1007/s11571-011-9157-x. Epub 2011 May 22.
5
Analyzing inner and outer synchronization between two coupled discrete-time networks with time delays.
Cogn Neurodyn. 2010 Sep;4(3):225-31. doi: 10.1007/s11571-010-9118-9. Epub 2010 Jun 18.
6
Mean square exponential and robust stability of stochastic discrete-time genetic regulatory networks with uncertainties.
Cogn Neurodyn. 2010 Jun;4(2):165-76. doi: 10.1007/s11571-010-9105-1. Epub 2010 Feb 13.
7
Stability, delay, and chaotic behavior in a lotka-volterra predator-prey system.
Math Biosci Eng. 2006 Jan;3(1):173-87. doi: 10.3934/mbe.2006.3.173.
8
Bursting near Bautin bifurcation in a neural network with delay coupling.
Int J Neural Syst. 2009 Oct;19(5):359-73. doi: 10.1142/S0129065709002087.
9
Stability and Hopf bifurcation in a simplified BAM neural network with two time delays.
IEEE Trans Neural Netw. 2007 Mar;18(2):416-30. doi: 10.1109/TNN.2006.886358.
10
Stability of analog neural networks with delay.
Phys Rev A Gen Phys. 1989 Jan 1;39(1):347-359. doi: 10.1103/physreva.39.347.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验