Suppr超能文献

量子限制拓扑绝缘体的变色现象。

The changing colors of a quantum-confined topological insulator.

机构信息

Department of Physics, Northeastern University , Boston Massachusetts, United States.

出版信息

ACS Nano. 2014 Feb 25;8(2):1222-30. doi: 10.1021/nn404013d. Epub 2014 Jan 29.

Abstract

Bismuth selenide (Bi2Se3) is a 3D topological insulator, its strong spin-orbit coupling resulting in the well-known topologically protected coexistence of gapless metallic surface states and semiconducting bulk states with a band gap, Eg ≃ 300 meV. A fundamental question of considerable importance is how the electronic properties of this material evolve under nanoscale confinement. We report on catalyst-free, high-quality single-crystalline Bi2Se3 with controlled lateral sizes and layer thicknesses that could be tailored down to a few nanometers and a few quintuple layers (QLs), respectively. Energy-resolved photoabsorption spectroscopy (1.5 eV < E(photon) < 6 eV) of these samples reveals a dramatic evolution of the photon absorption spectra as a function of size, transitioning from a featureless metal-like spectrum in the bulk (corresponding to a visually gray color), to one with a remarkably large band gap (Eg ≥ 2.5 eV) and a spectral shape that correspond to orange-red colorations in the smallest samples, similar to those seen in semiconductor nanostructures. We analyze this colorful transition using ab initio density functional theory and tight-binding calculations which corroborate our experimental findings and further suggest that while purely 2D sheets of few QL-thick Bi2Se3 do exhibit small band gaps that are consistent with previous ARPES results, the presently observed large gaps of a few electronvolts can only result from a combined effect of confinement in all three directions.

摘要

硒化铋(Bi2Se3)是一种 3D 拓扑绝缘体,其强自旋轨道耦合导致了无带隙金属表面态和带隙 Eg ≃ 300 meV 的半导体体相的拓扑保护共存这一众所周知的现象。一个非常重要的基本问题是这种材料的电子性质在纳米尺度限制下如何演变。我们报告了无催化剂、高质量的单晶 Bi2Se3,其横向尺寸和层厚度可以分别控制到几纳米和几个五倍层(QL)。这些样品的能量分辨光吸收光谱(1.5 eV < E(photon) < 6 eV)表明,随着尺寸的变化,光吸收光谱发生了剧烈的演化,从体相的无特征金属样光谱(对应于视觉上的灰色)转变为具有显著大带隙(Eg ≥ 2.5 eV)和光谱形状的光谱,在最小的样品中呈现出橙红色,类似于半导体纳米结构中的那些。我们使用第一性原理密度泛函理论和紧束缚计算来分析这种丰富多彩的转变,这证实了我们的实验结果,并进一步表明,虽然只有几个 QL 厚的二维 Bi2Se3 薄片确实表现出与之前的 ARPES 结果一致的小带隙,但目前观察到的几个电子伏特的大带隙只能来自于所有三个方向的限制的综合效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验