Department of Department of Microbiology Graduate Group, University of California, Davis, CA, 95616, USA.
Environ Microbiol. 2014 Nov;16(11):3398-415. doi: 10.1111/1462-2920.12388. Epub 2014 Feb 26.
Microbial metabolism is the engine that drives global biogeochemical cycles, yet many key transformations are carried out by microbial consortia over short spatiotemporal scales that elude detection by traditional analytical approaches. We investigate syntrophic sulfur cycling in the 'pink berry' consortia of the Sippewissett Salt Marsh through an integrative study at the microbial scale. The pink berries are macroscopic, photosynthetic microbial aggregates composed primarily of two closely associated species: sulfide-oxidizing purple sulfur bacteria (PB-PSB1) and sulfate-reducing bacteria (PB-SRB1). Using metagenomic sequencing and (34) S-enriched sulfate stable isotope probing coupled with nanoSIMS, we demonstrate interspecies transfer of reduced sulfur metabolites from PB-SRB1 to PB-PSB1. The pink berries catalyse net sulfide oxidation and maintain internal sulfide concentrations of 0-500 μm. Sulfide within the berries, captured on silver wires and analysed using secondary ion mass spectrometer, increased in abundance towards the berry interior, while δ(34) S-sulfide decreased from 6‰ to -31‰ from the exterior to interior of the berry. These values correspond to sulfate-sulfide isotopic fractionations (15-53‰) consistent with either sulfate reduction or a mixture of reductive and oxidative metabolisms. Together this combined metagenomic and high-resolution isotopic analysis demonstrates active sulfur cycling at the microscale within well-structured macroscopic consortia consisting of sulfide-oxidizing anoxygenic phototrophs and sulfate-reducing bacteria.
微生物代谢是驱动全球生物地球化学循环的引擎,但许多关键转化是由微生物共生体在短时空尺度上进行的,这使得传统的分析方法难以检测到。我们通过在微生物尺度上进行综合研究,研究了锡皮威塞特盐沼中“粉色莓果”共生体中的共生硫循环。粉色莓果是由两种密切相关的物种组成的宏观、光合作用微生物聚集体:硫氧化紫色硫细菌 (PB-PSB1) 和硫酸盐还原菌 (PB-SRB1)。我们使用宏基因组测序和 (34) S 富集硫酸盐稳定同位素探针与纳米 SIMS 结合,证明了 PB-SRB1 与 PB-PSB1 之间还原态硫代谢物的种间转移。粉色莓果催化净硫化物氧化,并维持内部硫化物浓度在 0-500μm 之间。用银线捕获的浆果内的硫化物,并使用二次离子质谱仪进行分析,其丰度向浆果内部增加,而δ(34) S-硫化物从浆果外部到内部从 6‰降低到-31‰。这些值对应于硫酸盐-硫化物同位素分馏 (15-53‰),与硫酸盐还原或还原和氧化代谢的混合物一致。综合宏基因组和高分辨率同位素分析表明,由硫氧化厌氧光合生物和硫酸盐还原菌组成的结构良好的宏观共生体在微观尺度上进行着活跃的硫循环。