[Structure and function of the genetic information in plastids : V. The absence of ribosomal rna from the plastids of the plastom-mutant 'mrs. parker' of Pelargonium zonale].
The variety 'Mrs. Parker' of Pelargonium zonale (fig. 1) is a periclinal chimera of the constitution white-over-green (LI and L II: white, L III: green). Reciprocal crosses with the green variety 'Trautlieb' demonstrate a biparental, extranuclear inheritance of the character green.- white. The F1 consists of green, green-white variegated and white seedlings (table 1). 2. In green-white variegated F1-plants "mixed cells" (fig. 2) have been found containing two genetically different types of plastids: green plastids (from 'Trautlieb') and white plastids (from 'Mrs. Parker'). The white cells of 'Mrs. Parker' represent a white plastid mutant (= plastom mutant); its genetic designation is "extranuclear: alba-1", symbol en: alba-1. 3. Leaf material for biochemical studies was obtained from pure white and entirely green shoots of variegated F1 hybrids (fig. 3). The ultrastructure of the white plastids was studied by electron microscopy. 4. From normal green cells of Pelargonium zonale four bands of high molecular weight ribosomal RNA can be isolated: 25 S and 18 S RNA of the cytoplasmic ribosomes and 23 S and 16 S RNA of plastid ribosomes (fig. 5a). 5. The mutation of the plastid DNA in the plastids of 'Mrs. Parker' causes an altered RNA pattern: The 23 S and 16 S RNA of the plastid ribosomes cannot be detected in polyacrylamid gels (whereas 25 S and 18 S RNA are present) (fig. 5b). 6. In cells of white leaves numerous plastids are present. They are smaller than normal chloroplasts and have a double-layered envelope. However, the formation of normal internal membrane structures is blocked. 7. In mutated plastids of 'Mrs. Parker' ribosomes cannot be detected in electron micrographs (fig. 6). 8. From these findings we conclude that protein synthesis cannot be performed in mutated plastids. The multiplication of the plastids - and presumably also the replication of plastid DNA - is not impaired by the deficiency in plastid protein synthesis. 9. These results indicate that protein synthesis within the plastids is necessary for full development and differentiation of the chloroplasts, although an essential part of the plastidal proteins are synthesized on cytoplasmic ribosomes.
摘要
天竺葵属的“帕克夫人”品种(图1)是一种周缘嵌合体,其结构为白上绿(LI和L II:白色,L III:绿色)。与绿色品种“特劳利布”的正反交表明,绿-白性状具有双亲的核外遗传。F1代包括绿色、绿白杂色和白色幼苗(表1)。2. 在绿白杂色的F1代植株中发现了“混合细胞”(图2),其中含有两种遗传上不同类型的质体:绿色质体(来自“特劳利布”)和白色质体(来自“帕克夫人”)。“帕克夫人”的白色细胞代表白色质体突变体(=质体系突变体);其遗传标记为“核外:alba - 1”,符号为en:alba - 1。3. 用于生化研究的叶片材料取自杂色F1代杂种的纯白和全绿枝条(图3)。通过电子显微镜研究了白色质体的超微结构。4. 从天竺葵属的正常绿色细胞中可以分离出四条高分子量核糖体RNA条带:细胞质核糖体的25 S和18 S RNA以及质体核糖体的23 S和16 S RNA(图5a)。5. “帕克夫人”质体中质体DNA的突变导致RNA模式改变:在聚丙烯酰胺凝胶中无法检测到质体核糖体的23 S和16 S RNA(而25 S和18 S RNA存在)(图5b)。6. 在白色叶片的细胞中有许多质体。它们比正常叶绿体小,有双层包膜。然而,正常内膜结构的形成受阻。7. 在“帕克夫人”的突变质体中,在电子显微镜照片中无法检测到核糖体(图6)。8. 从这些发现我们得出结论,突变质体中无法进行蛋白质合成。质体的增殖——大概还有质体DNA的复制——不受质体蛋白质合成缺陷的影响。9. 这些结果表明,尽管质体蛋白质的重要部分是在细胞质核糖体上合成的,但质体内的蛋白质合成对于叶绿体的充分发育和分化是必要的。