Xue Ning, Doellinger Michael, Ho Charles P, Surowiec Rachel K, Schwarz Raphael
Department of Phoniatrics and Pediatric Audiology, University Hospital Erlangen, Germany; Imaging and Therapy Division Healthcare Sector, Siemens AG, Erlangen, Germany.
J Magn Reson Imaging. 2015 Jan;41(1):183-92. doi: 10.1002/jmri.24516. Epub 2014 Jan 15.
To propose a new automated learning-based scheme for locating anatomical landmarks on the knee joint using three-dimensional (3D) MR image data.
This method makes use of interest points as candidates for landmarks. All candidates are evaluated by a "coarse to fine" 3D feature descriptor computed from manually placed landmarks in training datasets. The results are refined using a multi-classifier boosting system. We demonstrate our method by the detection of 24 landmarks on the knee joint of 35 subjects. To verify the robustness, the test datasets differ in contrast, resolution, patient positioning, and health condition of the knee joint. The proposed method is evaluated by measuring the distance between manually placed landmarks and automatically detected landmarks and the computational cost for detecting one landmark in a 3D dataset.
The results reveal that the method is capable of localizing landmarks with a reasonable accuracy (1.64 ± 1.03 mm [mean ± standard deviation]), sensitivity (97%) and run time efficiency (4.82 s).
This study suggests that the proposed method is an accurate and robust approach for the automated landmark detection in various MR datasets. The proposed method can be used as the initialization or constraint in higher level medical image processing workflows such as in kinematic description, segmentation and registration.
提出一种基于自动学习的新方案,用于利用三维(3D)磁共振成像(MR)图像数据在膝关节上定位解剖标志点。
该方法利用兴趣点作为标志点的候选点。所有候选点通过从训练数据集中手动放置的标志点计算出的“从粗到精”的3D特征描述符进行评估。结果使用多分类器增强系统进行细化。我们通过检测35名受试者膝关节上的24个标志点来展示我们的方法。为验证稳健性,测试数据集在对比度、分辨率、患者体位以及膝关节健康状况方面存在差异。通过测量手动放置的标志点与自动检测到的标志点之间的距离以及在3D数据集中检测一个标志点的计算成本来评估所提出的方法。
结果表明该方法能够以合理的精度(1.64±1.03毫米[平均值±标准差])、灵敏度(97%)和运行时间效率(4.82秒)定位标志点。
本研究表明所提出的方法是一种在各种MR数据集中进行自动标志点检测的准确且稳健的方法。所提出的方法可用于更高层次的医学图像处理工作流程,如运动学描述、分割和配准中的初始化或约束。