Suppr超能文献

Cajal氏“离心神经元”的形态、投射模式及神经化学特性:家鸽(Columba livia)和家鸡(Gallus gallus)中顶盖-脑室-膝状体通路的起源细胞

Morphology, projection pattern, and neurochemical identity of Cajal's "centrifugal neurons": the cells of origin of the tectoventrogeniculate pathway in pigeon (Columba livia) and chicken (Gallus gallus).

作者信息

Vega-Zuniga Tomas, Mpodozis Jorge, Karten Harvey J, Marín Gonzalo, Hain Sarah, Luksch Harald

机构信息

Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany.

出版信息

J Comp Neurol. 2014 Jul 1;522(10):2377-96. doi: 10.1002/cne.23539.

Abstract

The nucleus geniculatus lateralis pars ventralis (GLv) is a prominent retinal target in all amniotes. In birds, it is in receipt of a dense and topographically organized retinal projection. The GLv is also the target of substantial and topographically organized projections from the optic tectum and the visual wulst (hyperpallium). Tectal and retinal afferents terminate homotopically within the external GLv-neuropil. Efferents from the GLv follow a descending course through the tegmentum and can be traced into the medial pontine nucleus. At present, the cells of origin of the Tecto-GLv projection are only partially described. Here we characterized the laminar location, morphology, projection pattern, and neurochemical identity of these cells by means of neural tracer injections and intracellular fillings in slice preparations and extracellular tracer injections in vivo. The Tecto-GLv projection arises from a distinct subset of layer 10 bipolar neurons, whose apical dendrites show a complex transverse arborization at the level of layer 7. Axons of these bipolar cells arise from the apical dendrites and follow a course through the optic tract to finally form very fine and restricted terminal endings inside the GLv-neuropil. Double-label experiments showed that these bipolar cells were choline acetyltransferase (ChAT)-immunoreactive. Our results strongly suggest that Tecto-GLv neurons form a pathway by which integrated tectal activity rapidly feeds back to the GLv and exerts a focal cholinergic modulation of incoming retinal inputs.

摘要

外侧膝状体腹侧部(GLv)是所有羊膜动物中一个重要的视网膜靶区。在鸟类中,它接收密集且具有拓扑结构的视网膜投射。GLv也是来自视顶盖和视觉顶叶(超皮质)的大量且具有拓扑结构投射的靶区。顶盖和视网膜传入纤维在GLv外侧神经毡内同源性终止。GLv的传出纤维沿降支穿过被盖,并可追踪到脑桥内侧核。目前,视顶盖 - GLv投射的起源细胞仅得到部分描述。在这里,我们通过在脑片制备中进行神经示踪剂注射和细胞内填充以及在体内进行细胞外示踪剂注射,来表征这些细胞的分层位置、形态、投射模式和神经化学特性。视顶盖 - GLv投射起源于第10层双极神经元的一个独特亚群,其顶端树突在第7层水平呈现复杂的横向分支。这些双极细胞的轴突从顶端树突发出,沿视束走行,最终在GLv神经毡内形成非常细且局限的终末。双标记实验表明这些双极细胞具有胆碱乙酰转移酶(ChAT)免疫反应性。我们的结果强烈表明,视顶盖 - GLv神经元形成了一条通路,通过该通路,整合的顶盖活动迅速反馈到GLv,并对传入的视网膜输入施加局部胆碱能调制。

相似文献

2
An immunocytochemical analysis of the lateral geniculate complex in the pigeon (Columba livia).
J Comp Neurol. 1991 Dec 22;314(4):721-49. doi: 10.1002/cne.903140407.
7
Projection of the nucleus pretectalis to a retinorecipient tectal layer in the pigeon (Columba livia).
J Comp Neurol. 1996 May 6;368(3):424-38. doi: 10.1002/(SICI)1096-9861(19960506)368:3<424::AID-CNE8>3.0.CO;2-7.
9
Microconnectomics of the pretectum and ventral thalamus in the chicken (Gallus gallus).
J Comp Neurol. 2016 Aug 1;524(11):2208-29. doi: 10.1002/cne.23941. Epub 2015 Dec 23.

引用本文的文献

1
A thalamic hub-and-spoke network enables visual perception during action by coordinating visuomotor dynamics.
Nat Neurosci. 2025 Mar;28(3):627-639. doi: 10.1038/s41593-025-01874-w. Epub 2025 Feb 10.
3
AP-2δ Expression Kinetics in Multimodal Networks in the Developing Chicken Midbrain.
Front Neural Circuits. 2021 Oct 21;15:756184. doi: 10.3389/fncir.2021.756184. eCollection 2021.
4
Unraveling circuits of visual perception and cognition through the superior colliculus.
Neuron. 2021 Mar 17;109(6):918-937. doi: 10.1016/j.neuron.2021.01.013. Epub 2021 Feb 5.
5
Anatomy and Physiology of Neurons in Layer 9 of the Chicken Optic Tectum.
Front Neural Circuits. 2019 Oct 14;13:63. doi: 10.3389/fncir.2019.00063. eCollection 2019.
6
"Shepherd's crook" neurons drive and synchronize the enhancing and suppressive mechanisms of the midbrain stimulus selection network.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7615-E7623. doi: 10.1073/pnas.1804517115. Epub 2018 Jul 19.
7
Visual-Cerebellar Pathways and Their Roles in the Control of Avian Flight.
Front Neurosci. 2018 Apr 9;12:223. doi: 10.3389/fnins.2018.00223. eCollection 2018.
8
The Medial Ventrothalamic Circuitry: Cells Implicated in a Bimodal Network.
Front Neural Circuits. 2018 Feb 9;12:9. doi: 10.3389/fncir.2018.00009. eCollection 2018.

本文引用的文献

1
Attentional capture? Synchronized feedback signals from the isthmi boost retinal signals to higher visual areas.
J Neurosci. 2012 Jan 18;32(3):1110-22. doi: 10.1523/JNEUROSCI.4151-11.2012.
2
Efferent projections of C3 adrenergic neurons in the rat central nervous system.
J Comp Neurol. 2012 Aug 1;520(11):2352-68. doi: 10.1002/cne.23041.
3
Two distinct types of ON directionally selective ganglion cells in the rabbit retina.
J Comp Neurol. 2011 Sep 1;519(13):2509-21. doi: 10.1002/cne.22678.
5
Rules of competitive stimulus selection in a cholinergic isthmic nucleus of the owl midbrain.
J Neurosci. 2011 Apr 20;31(16):6088-97. doi: 10.1523/JNEUROSCI.0023-11.2011.
6
SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages.
Nat Immunol. 2010 Oct;11(10):920-7. doi: 10.1038/ni.1931. Epub 2010 Sep 5.
7
Cholinergic modulation of non-N-methyl-D-aspartic acid glutamatergic transmission in the chick ventral lateral geniculate nucleus.
Neuroscience. 2010 Mar 17;166(2):604-14. doi: 10.1016/j.neuroscience.2009.12.046. Epub 2009 Dec 24.
8
The optic tectum of birds: mapping our way to understanding visual processing.
Can J Exp Psychol. 2009 Dec;63(4):328-38. doi: 10.1037/a0016826.
10
A cholinergic gating mechanism controlled by competitive interactions in the optic tectum of the pigeon.
J Neurosci. 2007 Jul 25;27(30):8112-21. doi: 10.1523/JNEUROSCI.1420-07.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验