Suppr超能文献

利用卫星臭氧监测仪器 NO2 数据和土地利用回归模型预测日平均环境 NO2 浓度。

Daily ambient NO2 concentration predictions using satellite ozone monitoring instrument NO2 data and land use regression.

机构信息

Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard School of Public Health , 401 Park Drive, Landmark Center West Room 417, Boston, Massachusetts 02215, United States.

出版信息

Environ Sci Technol. 2014 Feb 18;48(4):2305-11. doi: 10.1021/es404845f. Epub 2014 Feb 4.

Abstract

Although ground measurements have contributed to revealing the association between ambient air pollution and health effects in epidemiological studies, exposure measurement errors are likely to be caused because of the sparse spatial distribution of ground monitors. In this study, we estimate daily ground NO2 concentrations in the New England region, U.S., for the period 2005-2010 using satellite remote sensing data in combination with land use regression. To estimate ground-level NO2 concentrations, we constructed a mixed effects model by taking advantage of spatial and temporal variability in satellite Ozone Monitoring Instrument (OMI) tropospheric column NO2 densities. Using fine-scale land use parameters, we derived NO2 concentrations at point locations, which can be further used for subject-specific exposure estimates in epidemiological studies. A mixed effects model showed a reasonably high predictive power for daily NO2 concentrations (cross-validation R(2) = 0.79). We observed that the model performed similarly in each season, year, and state. The spatial patterns of model estimates reflected emission source areas (such as high populated/traffic areas) in the study region and revealed the seasonal characteristics of NO2. This study suggests that a combination of satellite remote sensing and land use regression can be useful for both spatially and temporally resolved exposure assessments of NO2.

摘要

尽管地面测量有助于在流行病学研究中揭示环境空气污染与健康影响之间的关联,但由于地面监测器的空间分布稀疏,可能会导致暴露测量误差。在这项研究中,我们使用卫星遥感数据结合土地利用回归,估计了美国新英格兰地区 2005-2010 年期间的每日地面 NO2 浓度。为了估计地面 NO2 浓度,我们利用卫星臭氧监测仪器(OMI)对流层柱 NO2 密度的空间和时间可变性,构建了一个混合效应模型。利用细尺度土地利用参数,我们推算了点位置的 NO2 浓度,这些浓度可进一步用于流行病学研究中的个体暴露估计。混合效应模型对每日 NO2 浓度具有相当高的预测能力(交叉验证 R2=0.79)。我们观察到,该模型在每个季节、年份和州的表现都相似。模型估计的空间模式反映了研究区域内的排放源区域(如人口密集/交通繁忙地区),并揭示了 NO2 的季节性特征。本研究表明,卫星遥感和土地利用回归的结合可用于 NO2 的时空分辨暴露评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验