Li Rui, Gao Kaiming, Luo Hui, Wang Xiefeng, Shi Yan, Dong Qingsheng, Luan WenKang, You Yongping
Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, No,300, Guangzhou Road, Gulou District, Nanjing 210029, PR China.
J Exp Clin Cancer Res. 2014 Jan 19;33(1):9. doi: 10.1186/1756-9966-33-9.
Glioblastoma multiforme (GBM) is the most malignant type of glioma. Integrated classification based on mRNA expression microarrays and whole-genome methylation subdivides GBM into five subtypes: Classical, Mesenchymal, Neural, Proneural-CpG island methylator phenotype (G-CIMP) and Proneural-non G-CIMP. Biomarkers that can be used to predict prognosis in each subtype have not been systematically investigated.
In the present study, we used Cox regression and risk-score analysis to construct respective prognostic microRNA (miRNA) signatures in the five intrinsic subtypes of primary glioblastoma in The Cancer Genome Atlas (TCGA) dataset.
Patients who had high-risk scores had poor overall survival compared with patients who had low-risk scores. The prognostic miRNA signature for the Mesenchymal subtype (four risky miRNAs: miR-373, miR-296, miR-191, miR-602; one protective miRNA: miR-223) was further validated in an independent cohort containing 41 samples.
We report novel diagnostic tools for deeper prognostic sub-stratification in GBM intrinsic subtypes based upon miRNA expression profiles and believe that such signature could lead to more individualized therapies to improve survival rates and provide a potential platform for future studies on gene treatment for GBM.
多形性胶质母细胞瘤(GBM)是最恶性的胶质瘤类型。基于mRNA表达微阵列和全基因组甲基化的综合分类将GBM细分为五个亚型:经典型、间充质型、神经型、原神经-CpG岛甲基化表型(G-CIMP)和原神经-非G-CIMP。尚未系统研究可用于预测各亚型预后的生物标志物。
在本研究中,我们使用Cox回归和风险评分分析,在癌症基因组图谱(TCGA)数据集中的原发性胶质母细胞瘤的五个内在亚型中构建各自的预后微小RNA(miRNA)特征。
与低风险评分的患者相比,高风险评分的患者总生存期较差。间充质亚型的预后miRNA特征(四个风险miRNA:miR-373、miR-296、miR-191、miR-602;一个保护性miRNA:miR-223)在一个包含41个样本的独立队列中得到进一步验证。
我们报告了基于miRNA表达谱对GBM内在亚型进行更深入预后分层的新型诊断工具,并认为这种特征可能导致更个性化的治疗以提高生存率,并为未来GBM基因治疗研究提供潜在平台。