Suppr超能文献

基因组估计多形性胶质母细胞瘤中的非整倍体含量和改进的分类。

Genomic estimates of aneuploid content in glioblastoma multiforme and improved classification.

机构信息

Bioinformatics Program, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Clin Cancer Res. 2012 Oct 15;18(20):5595-605. doi: 10.1158/1078-0432.CCR-12-1427. Epub 2012 Aug 21.

Abstract

PURPOSE

Accurate classification of glioblastoma multiforme (GBM) is crucial for understanding its biologic diversity and informing diagnosis and treatment. The Cancer Genome Atlas (TCGA) project identified four GBM classes using gene expression data and separately identified three classes using methylation data. We sought to integrate multiple data types in GBM classification, understand biologic features of the newly defined subtypes, and reconcile with prior studies.

EXPERIMENTAL DESIGN

We used allele-specific copy number data to estimate the aneuploid content of each tumor and incorporated this measure of intratumor heterogeneity in class discovery. We estimated the potential cell of origin of individual subtypes and the euploid and aneuploid fractions using reference datasets of known neuronal cell types.

RESULTS

There exists an unexpected correlation between aneuploid content and the observed among-tumor diversity of expression patterns. Joint use of DNA and mRNA data in ab initio class discovery revealed a distinct group that resembles the Proneural subtype described in a separate study and the glioma-CpG island methylator phenotype (G-CIMP+) class based on methylation data. Three additional subtypes, Classical, Proliferative, and Mesenchymal, were also identified and revised the assignment for many samples. The revision showed stronger differences in patient outcome and clearer cell type-specific signatures. Mesenchymal GBMs had higher euploid content, potentially contributed by microglia/macrophage infiltration.

CONCLUSION

We clarified the confusion about the "Proneural" subtype that was defined differently in different prior studies. The ability to infer within-tumor heterogeneity improved class discovery, leading to new subtypes that are closer to the fundamental biology of GBM.

摘要

目的

准确分类胶质母细胞瘤(GBM)对于理解其生物学多样性以及指导诊断和治疗至关重要。癌症基因组图谱(TCGA)项目使用基因表达数据鉴定了 GBM 的四个类别,并分别使用甲基化数据鉴定了三个类别。我们试图在 GBM 分类中整合多种数据类型,了解新定义亚型的生物学特征,并与先前的研究相协调。

实验设计

我们使用等位基因特异性拷贝数数据来估计每个肿瘤的非整倍体含量,并将这种肿瘤内异质性的度量纳入分类发现中。我们使用已知神经元细胞类型的参考数据集来估计个体亚型的潜在细胞起源以及整倍体和非整倍体分数。

结果

非整倍体含量与观察到的肿瘤间表达模式多样性之间存在意外的相关性。在从头开始的分类发现中联合使用 DNA 和 mRNA 数据揭示了一个与在另一项独立研究中描述的神经前体亚型和基于甲基化数据的胶质细胞瘤-CpG 岛甲基化表型(G-CIMP+)类别相似的独特群体。还鉴定了另外三个亚型,即经典型、增殖型和间充质型,并对许多样本进行了修订分类。修订后的分类显示出患者预后的差异更大,细胞类型特异性特征更清晰。间充质 GBM 具有更高的整倍体含量,可能是由小胶质细胞/巨噬细胞浸润所致。

结论

我们澄清了先前不同研究中对“神经前体”亚型定义不同的混淆。推断肿瘤内异质性的能力改善了分类发现,导致了更接近 GBM 基础生物学的新亚型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/662e/3477792/c3e88f06da0e/nihms402549f1.jpg

相似文献

引用本文的文献

1
EPRIM: An approach of identifying cancer immune-related epigenetic regulators.EPRIM:一种识别癌症免疫相关表观遗传调节因子的方法。
Mol Ther Nucleic Acids. 2023 Dec 13;35(1):102100. doi: 10.1016/j.omtn.2023.102100. eCollection 2024 Mar 12.

本文引用的文献

1
Integrated genomic analyses of ovarian carcinoma.卵巢癌的综合基因组分析。
Nature. 2011 Jun 29;474(7353):609-15. doi: 10.1038/nature10166.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验