Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
BMC Med Inform Decis Mak. 2014 Jan 18;14:6. doi: 10.1186/1472-6947-14-6.
Physiologic signals, such as cardiac interbeat intervals, exhibit complex fluctuations. However, capturing important dynamical properties, including nonstationarities may not be feasible from conventional time series graphical representations.
We introduce a simple-to-implement visualisation method, termed dynamical density delay mapping ("D3-Map" technique) that provides an animated representation of a system's dynamics. The method is based on a generalization of conventional two-dimensional (2D) Poincaré plots, which are scatter plots where each data point, x(n), in a time series is plotted against the adjacent one, x(n + 1). First, we divide the original time series, x(n) (n = 1,…, N), into a sequence of segments (windows). Next, for each segment, a three-dimensional (3D) Poincaré surface plot of x(n), x(n + 1), h[x(n),x(n + 1)] is generated, in which the third dimension, h, represents the relative frequency of occurrence of each (x(n),x(n + 1)) point. This 3D Poincaré surface is then chromatised by mapping the relative frequency h values onto a colour scheme. We also generate a colourised 2D contour plot from each time series segment using the same colourmap scheme as for the 3D Poincaré surface. Finally, the original time series graph, the colourised 3D Poincaré surface plot, and its projection as a colourised 2D contour map for each segment, are animated to create the full "D3-Map."
We first exemplify the D3-Map method using the cardiac interbeat interval time series from a healthy subject during sleeping hours. The animations uncover complex dynamical changes, such as transitions between states, and the relative amount of time the system spends in each state. We also illustrate the utility of the method in detecting hidden temporal patterns in the heart rate dynamics of a patient with atrial fibrillation. The videos, as well as the source code, are made publicly available.
Animations based on density delay maps provide a new way of visualising dynamical properties of complex systems not apparent in time series graphs or standard Poincaré plot representations. Trainees in a variety of fields may find the animations useful as illustrations of fundamental but challenging concepts, such as nonstationarity and multistability. For investigators, the method may facilitate data exploration.
生理信号,如心搏间期,表现出复杂的波动。然而,从传统的时间序列图形表示中捕捉重要的动态特性,包括非平稳性可能是不可行的。
我们引入了一种简单实现的可视化方法,称为动态密度延迟映射(“D3-Map”技术),它提供了系统动态的动画表示。该方法基于传统二维(2D)庞加莱图的推广,庞加莱图是一种散点图,其中时间序列中的每个数据点 x(n) 都绘制在相邻的一个点 x(n+1) 上。首先,我们将原始时间序列 x(n)(n=1,...,N)分成一系列段(窗口)。接下来,对于每个段,生成 x(n)、x(n+1)、h[x(n),x(n+1)]的三维(3D)庞加莱曲面图,其中第三维 h 代表每个(x(n),x(n+1))点的相对出现频率。然后,通过将相对频率 h 值映射到颜色方案来对 3D 庞加莱曲面进行色谱化。我们还从每个时间序列段生成一个使用与 3D 庞加莱曲面相同颜色图方案的彩色二维等高线图。最后,原始时间序列图、彩色 3D 庞加莱曲面图及其作为每个段的彩色二维等高线图的投影,被动画化以创建完整的“D3-Map”。
我们首先使用健康受试者睡眠期间的心搏间期时间序列示例说明了 D3-Map 方法。动画揭示了复杂的动态变化,例如状态之间的转换,以及系统在每个状态下花费的相对时间。我们还说明了该方法在检测心房颤动患者心率动力学中隐藏的时间模式的实用性。视频以及源代码都可供公开使用。
基于密度延迟图的动画提供了一种可视化复杂系统动态特性的新方法,这些特性在时间序列图或标准庞加莱图表示中并不明显。各个领域的学员可能会发现动画对于说明基本但具有挑战性的概念(例如非平稳性和多稳定性)很有用。对于研究人员,该方法可能有助于数据探索。