Suppr超能文献

基于 Poincaré 映射函数和递归图的 EEG 信号分析情绪的非线性动力学方法。

A nonlinear dynamical approach to analysis of emotions using EEG signals based on the Poincaré map function and recurrence plots.

机构信息

Department of Radiology, Faculty of Paramedicine, AJA University of Medical Sciences, 1411861919 Tehran, Iran.

出版信息

Biomed Tech (Berl). 2020 Oct 25;65(5):507-520. doi: 10.1515/bmt-2019-0121.

Abstract

Dynamic variations of electroencephalogram (EEG) contain significant information in the study of human emotional states. Transient time methods are well suited to evaluate short-term dynamic changes in brain activity. Human affective states, however, can be more appropriately analyzed using chaotic dynamical techniques, in which temporal variations are considered over longer durations. In this study, we have applied two different recurrence-based chaotic schemes, namely the Poincaré map function and recurrence plots (RPs), to analyze the long-term dynamics of EEG signals associated with state space (SS) trajectory of the time series. Both approaches determine the system dynamics based on the Poincaré recurrence theorem as well as the trajectory divergence producing two-dimensional (2D) characteristic plots. The performance of the methods is compared with regard to their ability to distinguish between levels of valence, arousal, dominance and liking using EEG data from the "dataset for emotion analysis using physiological" database. The differences between the levels of emotional feelings were investigated based on the analysis of variance (ANOVA) test and Spearman's statistics. The results obtained from the RP features distinguish between the emotional ratings with a higher level of statistical significance as compared with those produced by the Poincaré map function. The scheme based on RPs was particularly advantageous in identifying the levels of dominance. Out of the 32 EEG electrodes examined, the RP-based approach distinguished the dominance levels in 23 electrodes, while the approach based on the Poincaré map function was only able to discriminate dominance levels in five electrodes. Furthermore, based on nonlinear analysis, significant correlations were observed over a wider area of the cortex for all affective states as compared with that reported based on the analysis of EEG power bands.

摘要

脑电图(EEG)的动态变化在人类情绪状态的研究中包含有重要信息。瞬态时间方法非常适合评估大脑活动的短期动态变化。然而,使用混沌动力技术可以更恰当地分析人类情感状态,其中时间变化被认为是在更长的时间内发生的。在这项研究中,我们应用了两种不同的基于递归的混沌方案,即庞加莱映射函数和递归图(RPs),来分析与时间序列的状态空间(SS)轨迹相关的 EEG 信号的长期动力学。这两种方法都基于庞加莱递归定理以及产生二维(2D)特征图的轨迹发散来确定系统动力学。将这两种方法的性能与使用“使用生理进行情感分析的数据集”数据库中的 EEG 数据来区分愉悦度、唤醒度、主导度和喜好度的能力进行了比较。根据方差分析(ANOVA)检验和斯皮尔曼统计对情感感受的差异进行了研究。与庞加莱映射函数产生的特征相比,RPs 特征获得的结果在区分情感评分方面具有更高的统计显著性。基于 RPs 的方案在识别主导度水平方面具有特别的优势。在所检查的 32 个 EEG 电极中,基于 RPs 的方法在 23 个电极中区分了主导度水平,而基于庞加莱映射函数的方法仅能够在 5 个电极中区分主导度水平。此外,基于非线性分析,与基于 EEG 频带分析的结果相比,在所有情感状态下,在大脑的更大区域观察到了显著的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验