Suppr超能文献

将新动态模型应用于血流动力学振荡和瞬态变化的近红外光谱测量的实际步骤:对脑血管和功能性脑研究的启示

Practical steps for applying a new dynamic model to near-infrared spectroscopy measurements of hemodynamic oscillations and transient changes: implications for cerebrovascular and functional brain studies.

作者信息

Kainerstorfer Jana M, Sassaroli Angelo, Hallacoglu Bertan, Pierro Michele L, Fantini Sergio

机构信息

Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155.

Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155.

出版信息

Acad Radiol. 2014 Feb;21(2):185-96. doi: 10.1016/j.acra.2013.10.012.

Abstract

RATIONALE AND OBJECTIVES

Perturbations in cerebral blood volume (CBV), blood flow (CBF), and metabolic rate of oxygen (CMRO2) lead to associated changes in tissue concentrations of oxy- and deoxy-hemoglobin (ΔO and ΔD), which can be measured by near-infrared spectroscopy (NIRS). A novel hemodynamic model has been introduced to relate physiological perturbations and measured quantities. We seek to use this model to determine functional traces of cbv(t) and cbf(t) - cmro2(t) from time-varying NIRS data, and cerebrovascular physiological parameters from oscillatory NIRS data (lowercase letters denote the relative changes in CBV, CBF, and CMRO2 with respect to baseline). Such a practical implementation of a quantitative hemodynamic model is an important step toward the clinical translation of NIRS.

MATERIALS AND METHODS

In the time domain, we have simulated O(t) and D(t) traces induced by cerebral activation. In the frequency domain, we have performed a new analysis of frequency-resolved measurements of cerebral hemodynamic oscillations during a paced breathing paradigm.

RESULTS

We have demonstrated that cbv(t) and cbf(t) - cmro2(t) can be reliably obtained from O(t) and D(t) using the model, and that the functional NIRS signals are delayed with respect to cbf(t) - cmro2(t) as a result of the blood transit time in the microvasculature. In the frequency domain, we have identified physiological parameters (e.g., blood transit time, cutoff frequency of autoregulation) that can be measured by frequency-resolved measurements of hemodynamic oscillations.

CONCLUSIONS

The ability to perform noninvasive measurements of cerebrovascular parameters has far-reaching clinical implications. Functional brain studies rely on measurements of CBV, CBF, and CMRO2, whereas the diagnosis and assessment of neurovascular disorders, traumatic brain injury, and stroke would benefit from measurements of local cerebral hemodynamics and autoregulation.

摘要

原理与目的

脑血容量(CBV)、脑血流量(CBF)和脑氧代谢率(CMRO2)的改变会导致氧合血红蛋白和脱氧血红蛋白组织浓度的相关变化(ΔO和ΔD),这可以通过近红外光谱(NIRS)测量。一种新的血流动力学模型已被引入,以关联生理扰动和测量量。我们试图使用该模型从随时间变化的NIRS数据中确定cbv(t)和cbf(t) - cmro2(t)的功能轨迹,并从振荡NIRS数据中确定脑血管生理参数(小写字母表示CBV、CBF和CMRO2相对于基线的相对变化)。这种定量血流动力学模型的实际应用是NIRS临床转化的重要一步。

材料与方法

在时域中,我们模拟了由脑激活引起的O(t)和D(t)轨迹。在频域中,我们对在定频呼吸范式期间脑血流动力学振荡的频率分辨测量进行了新的分析。

结果

我们已经证明,使用该模型可以从O(t)和D(t)可靠地获得cbv(t)和cbf(t) - cmro2(t),并且由于微血管中的血液传输时间,功能性NIRS信号相对于cbf(t) - cmro2(t)延迟。在频域中,我们确定了可以通过血流动力学振荡的频率分辨测量来测量的生理参数(例如,血液传输时间、自动调节的截止频率)。

结论

进行脑血管参数的无创测量的能力具有深远的临床意义。功能性脑研究依赖于CBV、CBF和CMRO2的测量,而神经血管疾病、创伤性脑损伤和中风的诊断和评估将受益于局部脑血流动力学和自动调节的测量。

相似文献

5
Near-infrared spectroscopy measurement of oxygen extraction fraction and cerebral metabolic rate of oxygen in newborn piglets.
Pediatr Res. 2003 Dec;54(6):861-7. doi: 10.1203/01.PDR.0000090928.93045.BE. Epub 2003 Aug 20.
6
Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy.
J Theor Biol. 2016 Jan 21;389:132-45. doi: 10.1016/j.jtbi.2015.11.001. Epub 2015 Nov 10.
7
Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?
Phys Med Biol. 2003 Aug 7;48(15):2405-18. doi: 10.1088/0031-9155/48/15/311.
9
Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.
Neuroimage. 2020 Sep;218:116871. doi: 10.1016/j.neuroimage.2020.116871. Epub 2020 Apr 23.
10
Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets.
J Appl Physiol (1985). 2006 Mar;100(3):850-7. doi: 10.1152/japplphysiol.00830.2005. Epub 2005 Nov 17.

引用本文的文献

3
Algorithm for Determination of Thresholds of Significant Coherence in Time-Frequency Analysis.
Biomed Signal Process Control. 2020 Feb;56. doi: 10.1016/j.bspc.2019.101704. Epub 2019 Oct 24.
5
Changes in neurovascular coupling with cerebral perfusion pressure indicate a link to cerebral autoregulation.
J Cereb Blood Flow Metab. 2022 Jul;42(7):1247-1258. doi: 10.1177/0271678X221076566. Epub 2022 Jan 25.
6
Noninvasive Optical Measurements of Dynamic Cerebral Autoregulation by Inducing Oscillatory Cerebral Hemodynamics.
Front Neurol. 2021 Nov 16;12:745987. doi: 10.3389/fneur.2021.745987. eCollection 2021.
8
Assessment of cerebrovascular dysfunction after traumatic brain injury with fMRI and fNIRS.
Neuroimage Clin. 2020;25:102086. doi: 10.1016/j.nicl.2019.102086. Epub 2019 Nov 11.
9
The meaning of "coherent" and its quantification in coherent hemodynamics spectroscopy.
J Innov Opt Health Sci. 2018 Nov;11(6). doi: 10.1142/S1793545818500360. Epub 2018 Sep 27.

本文引用的文献

4
Validation of a novel hemodynamic model for coherent hemodynamics spectroscopy (CHS) and functional brain studies with fNIRS and fMRI.
Neuroimage. 2014 Jan 15;85 Pt 1(0 1):222-33. doi: 10.1016/j.neuroimage.2013.03.037. Epub 2013 Apr 2.
5
Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates.
Neuroimage. 2014 Jan 15;85 Pt 1(0 1):279-86. doi: 10.1016/j.neuroimage.2013.01.035. Epub 2013 Jan 28.
7
Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics.
Neuroimage. 2012 Sep;62(3):1445-54. doi: 10.1016/j.neuroimage.2012.05.069. Epub 2012 Jun 1.
8
Calibrating the BOLD signal during a motor task using an extended fusion model incorporating DOT, BOLD and ASL data.
Neuroimage. 2012 Jul 16;61(4):1268-76. doi: 10.1016/j.neuroimage.2012.04.036. Epub 2012 Apr 23.
9
A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application.
Neuroimage. 2012 Nov 1;63(2):921-35. doi: 10.1016/j.neuroimage.2012.03.049. Epub 2012 Mar 28.
10
The intravascular susceptibility effect and the underlying physiology of fMRI.
Neuroimage. 2012 Aug 15;62(2):995-9. doi: 10.1016/j.neuroimage.2012.01.113. Epub 2012 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验