Suppr超能文献

采用 UHPLC-DAD-QTOF 进行激进的去重复化:对多达 3000 种真菌次级代谢产物进行提取物筛选。

Aggressive dereplication using UHPLC-DAD-QTOF: screening extracts for up to 3000 fungal secondary metabolites.

机构信息

Department of Systems Biology, Søltofts Plads, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark.

出版信息

Anal Bioanal Chem. 2014 Mar;406(7):1933-43. doi: 10.1007/s00216-013-7582-x. Epub 2014 Jan 18.

Abstract

In natural-product drug discovery, finding new compounds is the main task, and thus fast dereplication of known compounds is essential. This is usually performed by manual liquid chromatography-ultraviolet (LC-UV) or visible light-mass spectroscopy (Vis-MS) interpretation of detected peaks, often assisted by automated identification of previously identified compounds. We used a 15 min high-performance liquid chromatography-diode array detection (UHPLC-DAD)-high-resolution MS method (electrospray ionization (ESI)(+) or ESI(-)), followed by 10-60 s of automated data analysis for up to 3000 relevant elemental compositions. By overlaying automatically generated extracted-ion chromatograms from detected compounds on the base peak chromatogram, all major potentially novel peaks could be visualized. Peaks corresponding to compounds available as reference standards, previously identified compounds, and major contaminants from solvents, media, filters etc. were labeled to differentiate these from compounds only identified by elemental composition. This enabled fast manual evaluation of both known peaks and potential novel-compound peaks, by manual verification of: the adduct pattern, UV-Vis, retention time compared with log D, co-identified biosynthetic related compounds, and elution order. System performance, including adduct patterns, in-source fragmentation, and ion-cooler bias, was investigated on reference standards, and the overall method was used on extracts of Aspergillus carbonarius and Penicillium melanoconidium, revealing new nitrogen-containing biomarkers for both species.

摘要

在天然产物药物发现中,寻找新化合物是主要任务,因此快速鉴定已知化合物至关重要。这通常通过手动液相色谱-紫外(LC-UV)或可见光-质谱(Vis-MS)检测峰的解释来完成,通常通过自动识别先前鉴定的化合物来辅助。我们使用了 15 分钟的高效液相色谱-二极管阵列检测(UHPLC-DAD)-高分辨率 MS 方法(电喷雾电离(ESI)(+)或 ESI(-)),然后对多达 3000 个相关元素组成进行 10-60 秒的自动数据分析。通过将自动生成的从检测化合物中提取的离子色谱叠加到基峰色谱上,可以可视化所有主要的潜在新峰。与可用作参考标准的化合物、先前鉴定的化合物以及来自溶剂、介质、过滤器等的主要污染物对应的峰被标记,以将其与仅通过元素组成鉴定的化合物区分开来。这使得可以快速手动评估已知峰和潜在新化合物峰,通过手动验证加合物模式、UV-Vis、保留时间与 log D 的比较、共同鉴定的生物合成相关化合物和洗脱顺序来实现。在参考标准上研究了系统性能,包括加合物模式、源内碎裂和离子冷却器偏置,并且该方法整体上用于黑曲霉和青霉的提取物,揭示了这两个物种的新含氮生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4663/3955480/b10a63c957fb/216_2013_7582_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验